
Multilink Frame Relay UNI/NNI
 Implementation Agreement

FRF. 16

Frame Relay Forum Technical Committee
August 1999





Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

Note: The user’s attention is called to the possibility that implementation of the frame relay implementation
agreement contained herein may require the use of inventions covered by patent rights held by third parties. By
publication of this frame relay implementation agreement the Frame Relay Forum makes no representation that the
implementation of the specification will not infringe on any third party rights. The Frame Relay Forum take no
position with respect to any claim that has been or may be asserted by any third party, the validity of any patent
rights related to any such claims, or the extent to which a license to use any such rights may not be available.

Editor:

Mike Sheehan
Ascend Communications Corporation

For more information contact:

The Frame Relay Forum
Suite 307
39355 California Street
Fremont, CA  94538  USA

Phone: +1 (510) 608-5920
FAX: +1 (510) 608-5917
E-Mail: frf@frforum.com





Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

Page i

Table of Contents

1 INTRODUCTION.........................................................................................................................................................1

1.1 PURPOSE ...................................................................................................................................................................1
1.2 MULTILINK FRAME RELAY APPLICATIONS.........................................................................................................1
1.3 DEFINITIONS.............................................................................................................................................................2
1.4 TERMINOLOGY .........................................................................................................................................................2
1.5 ACRONYM LIST ........................................................................................................................................................2
1.6 RELEVANT STANDARDS..........................................................................................................................................3

2 REFERENCE MODEL................................................................................................................................................3

2.1 UNI............................................................................................................................................................................4
2.2 NNI............................................................................................................................................................................4
2.3 PROTOCOL STACK ...................................................................................................................................................5
2.4 INTER-LAYER COMMUNICATION...........................................................................................................................6
2.5 Q.933 ANNEX A STATUS PROCEDURES...............................................................................................................8

3 FORMATS ......................................................................................................................................................................8

3.1 MFR FRAGMENTATION FRAME FORMAT ............................................................................................................8
3.2 LINK INTEGRITY PROTOCOL CONTROL MESSAGE FORMAT .............................................................................9
3.3 CONTROL MESSAGES............................................................................................................................................10

3.3.1 ADD_LINK Message......................................................................................................................................10
3.3.2 ADD_LINK_ACK Message..........................................................................................................................10
3.3.3 ADD_LINK_REJ Message............................................................................................................................11
3.3.4 HELLO Message .............................................................................................................................................11
3.3.5 HELLO_ACK Message..................................................................................................................................11
3.3.6 REMOVE_LINK Message ............................................................................................................................11
3.3.7 REMOVE_LINK_ACK Message.................................................................................................................11

3.4 INFORMATION FIELDS...........................................................................................................................................12
3.4.1 Bundle Identification Information Field.......................................................................................................12
3.4.2 Link Identification Information Field ...........................................................................................................13
3.4.3 Magic Number Information Field..................................................................................................................14
3.4.4 Timestamp Information Field.........................................................................................................................14
3.4.5 Vendor Extension Information Field ............................................................................................................15
3.4.6 Cause Information Field..................................................................................................................................16

4 PROCEDURES ........................................................................................................................................................... 16

4.1 OVERVIEW..............................................................................................................................................................16
4.2 BUNDLE PROCEDURES..........................................................................................................................................17

4.2.1 General...............................................................................................................................................................17
4.2.2 Bundle Management........................................................................................................................................17
4.2.3 Frame Processing.............................................................................................................................................18

4.3 BUNDLE LINK PROCEDURES................................................................................................................................19
4.3.1 General...............................................................................................................................................................19
4.3.2 Addition of Bundle Link to Bundle Operation............................................................................................19
4.3.3 Bundle Link Operation....................................................................................................................................22
4.3.4 Removal of Bundle Link from Bundle Operation ......................................................................................23
4.3.5 Loss of Physical Layer When Administratively Up...................................................................................24
4.3.6 Loss of Physical Layer When Administratively Down .............................................................................24



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

Page ii

4.3.7 Looped-back Link Detection Procedure.......................................................................................................25
4.3.8 System Parameters ...........................................................................................................................................25
4.3.9 Error Conditions...............................................................................................................................................26

A INFORMATIVE ANNEX – BUNDLE LINK PROTOCOL STATE MACHINE.................................... 27

A.1 STATES.......................................................................................................................................................................I
A.2 EVENTS......................................................................................................................................................................I
A.3 ACTIONS................................................................................................................................................................... II



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

Page iii

List of Tables
Table 1 Primitives ............................................................................................................................................................................7
Table 2 Class of Bandwidth Requirements................................................................................................................................17
Table 3 System Parameters ...........................................................................................................................................................25
Table 4 Cause Values ....................................................................................................................................................................26
Table 5 MFR Link Integrity Protocol State Transitions – Normal States – Part 1..............................................................28
Table 6 MFR Link Integrity Protocol State Transitions – Normal States – Part 2..............................................................29
Table 7 MFR Link Integrity Protocol State Transitions – Down States ...............................................................................29

List of Figures
Figure 1 UNI Reference Model......................................................................................................................................................4
Figure 2 NNI Reference Model......................................................................................................................................................4
Figure 3  Protocol Stack for MFR..................................................................................................................................................5
Figure 4 Relationship Between Layers .........................................................................................................................................7
Figure 5 MFR Fragmentation Frame.............................................................................................................................................8
Figure 6 MFR Link Integrity Protocol Message Format ...........................................................................................................9
Figure 7 MFR Link Integrity Protocol Information Field Format .........................................................................................10
Figure 8 Bundle Identification Information Field .....................................................................................................................12
Figure 9 Link Identification Information Field .........................................................................................................................13
Figure 10 Magic Number Information Field..............................................................................................................................14
Figure 11 Timestamp Information Field.....................................................................................................................................14
Figure 12 Vendor Extension Information Field ........................................................................................................................15
Figure 13 Cause Information Field..............................................................................................................................................16
Figure 14 Example Calculation of Frame Assembly Time Interval......................................................................................19
Figure 15 Bundle Configuration Error Example .......................................................................................................................21
Figure 16 MFR Link Integrity Protocol State Machine...........................................................................................................27



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

Page iv

Revision History

Version Change Date
FRF.MFR-UN Document Approved TBD



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

1 Introduction

1.1 Purpose
Multilink Frame Relay (MFR) for the User-to-Network Interface (UNI) and the Network-to-Network Interface
(NNI) provides physical interface emulation for frame relay devices.  The emulated physical interface consists
of one or more physical links, called "bundle links", aggregated together into a single "bundle" of bandwidth.
This service provides a frame-based inverse multiplexing function, sometimes referred to as an "IMUX".

The bundle provides the same order-preserving service as a physical layer for frames sent on a data link
connection.  In addition, the bundle provides support for all Frame Relay services based on UNI and NNI
standards.

The agreements herein were reached in the Frame Relay Forum, and are based on the relevant Frame Relay
and Internetworking standards referenced in Section 1.6.  They document agreements reached among vendors
and suppliers of Frame Relay network products and services regarding Frame Relay.

This document may be submitted to different bodies involved in ratification of implementation agreements and
conformance testing to facilitate multi-vendor interoperability, and to different standards bodies for inclusion
in international standards.

1.2 Multilink Frame Relay Applications
Multilink Frame Relay solves the following problems on user-to-network and network-to-network interfaces in
a frame relay network:

• Lack of required bandwidth availability due to facility constraints (e.g. no E3/T3 service in a
geographical region) or service offering restrictions (e.g. no fractional E1/T1 service),

• The physical interface as an inflexible pool of bandwidth, and

• The physical interface as a single point of failure on the frame relay interface.

By combining multiple physical interfaces into a single bundle, a network operator can design a frame relay
interface supporting more bandwidth than is available from any single physical interface.  Further, this
agreement provides techniques that, if applied by equipment vendors, support the dynamic addition and
removal of physical interfaces to change the total bandwidth available on the interface.  Finally, resilience is
provided when multiple physical interfaces are provisioned on a single bundle so that when some of the
physical interfaces fail, the bundle continues to support the frame relay service.



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

1.3 Definitions
Must, Shall, or Mandatory — the item is an absolute requirement of the implementation agreement.

Should — the item is highly desirable.

May or Optional  — the item is not compulsory and may be followed or ignored according to the needs of the
implementor.

1.4 Terminology
Physical Link  -- A single physical interface that interconnects two devices in a frame relay

network (e.g. DS1, DS0, Bearer channel, refer to FRF.14).

Bundle  — A grouping of one or more physical links using the formats and procedures
of multilink frame relay.   The bundle operates as a logical interface
function that emulates a single physical interface to the Q.922 data link
layer.

Bundle Link— A MFR sub-component that controls operation of one of the bundle's
physical links.

MFR Control Frame  — A frame used to exchange MFR Link Control information.

MFR Information Frame  — A frame used to transport Q.922 data frames (i.e. frame relay signaling and
data frames).

1.5 Acronym List
DCE Data Circuit-terminating Equipment

DLCI Data Link Connection Identifier

DTE Data Terminal Equipment

FR Frame Relay

HDLC High Level Data Link Control

IA Implementation Agreement

IMUX Inverse Multiplexer

MDL Communication between layer management entity and data link layer

MFR Multilink Frame Relay

MTU Maximum Transmission Unit

OUI Organizationally Unique Identifier

NNI Network-to-Network Interface

PVC Permanent Virtual Connection

SVC Switched Virtual Connection

UNI User-to-Network Interface



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

1.6 Relevant Standards
The following is a list of standards on which these implementation agreements are based:

[1] FRF.3.1 R. Cherukuri (ed.), Multiprotocol Encapsulation Implementation Agreement, June 22,
1995.

[2] RFC 2427 C. Brown, A. Malis, Multiprotocol Interconnect over Frame Relay, September 1998

[3] FRF.12 Frame Relay PVC Fragmentation Implementation Agreement. December 1997.

[4] FRF1.1 User-to-Network Implementation Agreement, January 18, 1996.

[5] FRF.14 K. Rehbehn, Physical Layer Implementation Agreement.

[6] RFC 1990, K. Sklower, B. Lloyd, G. McGregor, D. Carr, T. Coradetti, The PPP Multilink Protocol
(MP), August 1996.

[7] Q.922 ITU-T. Recommendation Q.922, ISDN Data Link Layer Specification for Frame Mode
Bearer Services.

[8] Q.921 ITU-T. Recommendation Q.921, ISDN  USER-NETWORK  INTERFACE-DATA
LINK  LAYER  SPECIFICATION

[9] Q.933 ITU-T. Recommendation Q.933, ISDN Signaling Specification for Frame Mode Bearer
Services.

[10] RFC 1661 W. Simpson, The Point-to-Point Protocol (PPP), July 1994

2 Reference Model
This implementation agreement provides two types of interface-based multilink support for frame relay: the
User-to-Network interface (UNI) and the Network-to-Network interface (NNI).   A MFR interface consists of
one or more bundle links bound together to form a bundle.  The bundle operates as a logical interface function
that emulates a single physical interface.

Each type of bundle is described below. The two types of bundles use identical message formats and protocol
procedures.



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

2.1 UNI
The UNI-based MFR interface connects data terminal equipment (DTE) to the network data circuit-
terminating equipment (DCE).  Figure 1illustrates the structure of this interface.

Frame Relay
Network

DCE Interface
Logical
Multlink
Function

Frame Relay
DTE

Logical
Multlink
Function

DCE
Interface

Frame
Relay VC

Multilink Peers

Bundle

Bundle Link

Frame Relay
DTE Device

Frame Relay
DTE Device

Figure 1 UNI Reference Model

2.2 NNI
Figure 2 illustrates the structure of the NNI-based Multilink Frame Relay interface.  One or more bundle links
are bound together to form a bundle between adjacent DCE devices.

Multilink Peers

Frame Relay
Network

Frame
Relay VC

DCE
Interface

Frame Relay
Network

DCE
Interface

Frame
Relay VC

NNI
Interface

Logical Mutlilink
Function

NNI
Interface

Logical Mutlilink
Function

BundleBundle Link(s)

Frame Relay
DTE Device

Frame Relay
DTE Device

Figure 2 NNI Reference Model



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

2.3 Protocol Stack

The bundle operates in conjunction with the Q.922 data link layer.  It emulates the functions of the physical
layer.
Figure 3 illustrates the relationship between the bundle and the other elements of the protocol stack.  The Data
Link Layer multiplexes frames from the different data link connections, including the data link connection
assigned to signaling for the C-Plane.  Frames are exchanged with the bundle Layer which emulates a physical
interface for the transport of frames.  The bundle Layer assigns frames to one or more bundle links for
transport to the peer over a real instance of a Physical Layer.

The bundle Layer may dispatch frames over any bundle link.  The receiving bundle Layer must ensure that a
data link connection's frame order is preserved.  The bundle Layer may also implement fragmentation
procedures to limit the maximum size of a frame transmitted over a bundle link.

Figure 3
Protocol Stack for MFR

Data Link (DL) - Q.922

Bundle (B)

Bundle Link (BL)

U-Plane
(Note 3)

C-Plane - Q.933 (Note 1)

Switching Layer -or-
Layer 3 Applications (e.g. IP)

Bundle Link (BL) Bundle Link (BL)

Data Link (DL) - Q.922

Bundle (B)

Bundle Link (BL)

Switching Layer -or-
Layer 3 Applications (e.g. IP)

Bundle Link (BL) Bundle Link (BL)

Physical (PH) Physical (PH)Physical (PH) Physical (PH) Physical (PH) Physical (PH)

Bundle
Bundle Link

U-Plane
(Note 3)

U-Plane
(Note 3)

U-Plane
(Note 3)Q.922 (Note 2)

C-Plane - Q.933 (Note 1)

Q.922 (Note 2)

Note 1: C-Plane operation as described in Q.933 [9] and FRF.4 [11]
Note 2: Mutiple frame acknowledged information transfer mode as described in
Q.922 [7]
Note 3: Core aspects for use with frame relaying bearer service as described
in Q.922, Annex A [7]



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

2.4 Inter-layer Communication
Primitives are used as an abstract description of the control interface between a bundle link, other layers, and
layer management.  Primitives do not specify or constrain implementations.  Table 1 illustrates the primitives
defined in this agreement.

The bundle presents a physical layer interface to the data link layer.  The MFR bundle link utilizes the actual
physical layer.  Both instances use the same physical layer primitives found in Q.921[8].

The primitives unique to the bundle are:

MB_ADD_LINK The MB_ADD_LINK request primitive is used to request the addition of a bundle
link to the active operation of a bundle.

MB_REMOVE_LINK The MB_REMOVE_LINK primitive is used to request the transition of a bundle
link from active operation to an idle state. Once issued, the endpoint must not
attempt to transmit additional frames on the bundle link.  However, the endpoint
should continue to accept frames until the MB_REMOVE_LINK response
primitive is issued following receipt of the acknowledgement from the peer
endpoint.

MB_ERROR The MB_ERROR primitive reports error conditions detected during bundle
operation

BL_ACTIVATE The BL_ACTIVATE primitive controls the addition of an individual bundle link to
a bundle.  The confirmation is returned when the bundle link is ready to transmit
and receive frames.

BL_DEACTIVATE THE BL_DEACTIVATE primitive controls the removal an individual bundle link.
After the bundle requests removal of a bundle link, the bundle must not transmit
any frames on that bundle link.  However, the bundle may continue to receive
frames from the bundle link until the BL_DEACTIVATE confirmation is received.
BL_DEACTIVATE indication is issued following detection of error conditions on
the bundle link.

BL_DATA The BL_DATA primitive forwards a single fragment to and from an individual
bundle link.

PH_ACTIVATE Refer to Q.921 [8].  Note that the bundle Layer emulates the physical layer to the
data link layer. The bundle supports a set of physical layer primitives to provide an
emulated physical layer for the data link layer.  The individual bundle links also
utilize the physical layer primitives to interact with a real instance of a physical
link.

PH_DEACTIVATE Refer to Q.921 [8].

PH_DATA Refer to Q.921 [8].



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

Type
Generic Name

Request Ind Confirm
Parameter Data Contents

MB_ADD_LINK X X bundle Identification, Link Identification

MB_REMOVE_LINK X X Link Identification

MB_ERROR - X Reason for error

BL_ACTIVATE X X bundle Identification, Link Identification

BL_DEACTIVATE X X X Cause, Diagnostic Field

BL_DATA X X Fragmentation Frame

PH_ACTIVATE X X

PH_DEACTIVATE X

PH_DATA X X Data Link Frame

Table 1
Primitives

Figure 4 illustrates the relationship between the protocol layers.

Figure 4 Relationship Between Layers

Data Link (DL)

Bundle (B)
( Emulates Physical Layer)

Physical (PH)

Bundle Link (BL)
(Emulates Data Link Layer)

La
ye

r 
M

an
ag

em
en

t

MB_ADD_LINK.ind

MB_ERROR.ind

MB_ADD_LINK.req

B
L_

A
C

T
IV

A
T

E
.re

q

B
L_

A
C

T
IV

A
T

E
.in

d

B
L_

D
E

A
C

T
IV

A
T

E
.in

d

B
L_

D
E

A
C

T
IV

A
T

E
.re

q

P
H

_D
A

T
A

.r
eq

P
H

_D
A

T
A

.in
d

P
H

_A
C

TI
V

A
TE

.re
q

P
H

_A
C

T
IV

A
T

E
.in

d

P
H

_D
E

A
C

T
IV

A
T

E
.in

d

P
H

_D
A

TA
.re

q

P
H

_D
A

T
A

.in
d

P
H

_A
C

TI
V

A
TE

.re
q

P
H

_A
C

T
IV

A
T

E
.in

d

P
H

_D
E

A
C

T
IV

A
T

E
.in

d

B
L_

D
A

TA
.re

q

B
L_

D
A

T
A

.in
d

Physical (PH)

Bundle Link (BL)

MB_REMOVE_LINK.ind

MB_REMOVE_LINK.req

Physical (PH)

Bundle Link (BL)

Bundle Link 1 Bundle Link 2 Bundle Link N



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

2.5 Q.933 Annex A Status Procedures
The Q.933 Annex A Status Procedure, operating on a MFR interface, transmits frames (e.g. FULL STATUS
REQUEST message) using the PH_DATA request primitive.  Incoming messages are received via the
PH_DATA indication primitive.

The bundle links of the bundle do not perform special procedures in support of the Q.933 Annex A Status
Procedure.  All frames sent on the signaling DLCI are scheduled over the bundle link in the same way as user
plane data is scheduled.

3 Formats

3.1 MFR Fragmentation Frame Format
Frame relay frames transmitted on the bundle are encapsulated in an MFR fragmentation frame, as shown in
Figure 5.  Fragment structure and fragmentation procedures are described in [FRF.12].  The UNI and NNI
interface fragmentation techniques described in FRF.12[3]apply.  The (C)ontrol Bit described in Section 5.1 of
FRF.12[3] must be set to zero for all MFR fragmentation frames.

Bits
8 7 6 5 4 3 2 1 Octets
B E 0 Sequence Number (msb) 1 1

Sequence Number (lsb) 2

DLCI (msb) C/R 0 3

DLCI (lsb) FECN BECN DE 1 4

Fragment Payload 5

Figure 5
MFR Fragmentation Frame



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

3.2 Link Integrity Protocol Control Message Format
MFR Link Integrity Protocol control messages are transmitted in MFR frames that have the (C)ontrol Bit set to
one.   All messages are sent in a single fragment (B=1 and E=1).  The message consists of a Message Type
Field and multiple variable length information fields.

The format of the MFR Link Integrity Protocol message is shown in Figure 6.

 Bits
8 7 6 5 4 3 2 1 Octets
1 1 1 0 0 0 0 1 1
B E C Spare
0 0 0 0 0 0 0 0 2

Spare (Note 1)
Message Type 3

(Note 2)

4Information Field 1

NInformation Field N

NOTES:
1. Spare bits should not be set.  A message with the spare bits set shall not be

rejected.

2. Message Type values are:
1 ADD_LINK
2 ADD_LINK_ACK
3 ADD_LINK_REJ
4 HELLO
5 HELLO_ACK
6 REMOVE_LINK
7 REMOVE_LINK_ACK

Figure 6
MFR Link Integrity Protocol Message Format



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

The format of an information field is shown in Figure 7.  Each link integrity protocol message consists of one
or more information fields.  The message's information fields must be in ascending order by type.

Bits
8 7 6 5 4 3 2 1 Octets

Type 1
(Note 1)

Length 2
(Note 2)

3 - NData

NOTES:
1. The following information field type encodings are used:

1 Magic number
2 Bundle identification
3 Link identification
4 Timestamp Information
5 Vendor extension
6 Cause

2. Length includes the Type, Length, and Data sub-fields.

Figure 7
MFR Link Integrity Protocol Information Field Format

3.3 Control Messages

3.3.1 ADD_LINK Message
The ADD_LINK message notifies the peer endpoint that the local endpoint supports frame processing.  The
message includes information required to verify bundle membership and detect loopbacks.  Both ends of a
bundle link generate this message when a bundle link endpoint is ready to become operational.

The ADD_LINK message must contain the Bundle Identification Information Field  (Section 3.4.1), the Link
Identification Information Field (Section 3.4.2), and the Magic Number Information Fields (Section 3.4.3).

The ADD_LINK message may contain the optional Vendor Extension Information Field  (Section 3.4.5) and
Timestamp Information Field (Section 3.4.4).

3.3.2 ADD_LINK_ACK Message
The ADD_LINK_ACK message notifies the peer endpoint that the local endpoint has received a valid
ADD_LINK message.

The ADD_LINK_ACK message must contain the Bundle Identification Information Field (Section 3.4.1), the
Link Identification Information Field (Section 3.4.2), and the Magic Number Information Field (Section 3.4.3).
The values contained in the Bundle Identification Information Field and Link Identification Information Field
reflect the identity of the bundle link endpoint transmitting the ADD_LINK_ACK message.

The ADD_LINK_ACK message must contain the timestamp received in the last received ADD_LINK
message, if the Timestamp Information Field was present in the last received ADD_LINK message.

The ADD_LINK_ACK message may contain the optional Vendor Extension Information Field (Section 3.4.5)
with the same Organizationally Unique Identifier (OUI) as was present in the last received ADD_LINK
message.



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

3.3.3 ADD_LINK_REJ Message
The ADD_LINK_REJ message notifies the peer endpoint that the local endpoint has received an invalid
ADD_LINK message.

The ADD_LINK_REJ message must contain the Bundle Identification Information Field (Section 3.4.1), the
Link Identification Field (Section 3.4.2), the Magic Number Information Field (Section 3.4.3), and the Cause
Information Field (Section 3.4.6).  Note that the values contained in the Bundle Identification Information and
Link Identification Information Fields reflect the identity of the bundle link endpoint transmitting the
ADD_LINK_REJ message and should be communicated to the layer management function.

The ADD_LINK_REJ message may contain the optional Vendor Extension Information Field (Section 3.4.5).
If included, the Vendor Extension Information Field must contain the same Organizationally Unique Identifier
(OUI) as was present in the last received ADD_LINK message.

3.3.4 HELLO Message
The HELLO message notifies the peer endpoint that the local endpoint remains in the state up. Both ends of a
bundle link generate this message on a periodic basis.

The HELLO message must contain the Magic Number Information Field (Section 3.4.3).

The HELLO message may contain the optional Vendor Extension Information Field (Section 3.4.5).  The
Vendor Extension Information Field must have an OUI that is the same as the OUI exchanged between the
bundle link endpoints in the ADD_LINK and ADD_LINK_ACK messages.

The HELLO message may contain the optional Timestamp Information Fields (Section 3.4.4).

3.3.5 HELLO_ACK Message
The HELLO_ACK message notifies the peer that the local endpoint has received a valid HELLO message.

The HELLO_ACK message must include the Magic Number Information Field (Section 3.4.3).

The HELLO_ACK message must contain the timestamp received in the last received HELLO message, if the
Timestamp Information Field was present in the last received HELLO message.

The HELLO_ACK may contain the optional Vendor Extension Information Field (Section 3.4.5).

If included, the Vendor Extension Information Field must contain the same Organizationally Unique Identifier
(OUI) as was present in the last received HELLO message.

3.3.6 REMOVE_LINK Message
The REMOVE_LINK message notifies the peer that the local end layer management function is removing the
bundle link from bundle operation.

The REMOVE_LINK message must include the Magic Number (Section 3.4.3) and Cause Information Fields
(Section 3.4.6).

The REMOVE_LINK message may contain the optional Vendor Extension Information Field (Section 3.4.5).
If included, the Vendor Extension Information Field must contain the same Organizationally Unique Identifier
(OUI) as was present in the last received REMOVE_LINK message.

3.3.7 REMOVE_LINK_ACK Message
The REMOVE_LINK_ACK message notifies the peer that the local end has received a REMOVE_LINK
message.

The REMOVE_LINK_ACK message must include the Magic Number Information Field (Section 3.4.3)



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

The REMOVE_LINK_ACK message may contain the optional Vendor Extension Information Field (Section
3.4.5).  If included, the Vendor Extension Information Field must contain the same Organizationally Unique
Identifier (OUI) as was present in the last received REMOVE_LINK_ACK message.

3.4 Information Fields

3.4.1 Bundle Identification Information Field
The Bundle Identification Information Field provides information used to associate a local endpoint and a
remote endpoint with a specific bundle.  Assignment of bundle links to specific bundles is performed via the
layer management function.

The value used for bundle identification has significance for both local and remote endpoints.  The local
endpoint assigns the bundle identification to group bundles while the remote end use the bundle identification
to verify that the configuration of the bundle identification is consistent with other bundle links in the same
bundle.  The value may or may not be the same as the value created by the other endpoint on the link.

Figure 8 shows the Bundle Identification Information Field.

Bits
8 7 6 5 4 3 2 1 Octets
0 0 0 0 0 0 0 1

Bundle Identification Information Field
1

Length 2
(Note 1)

Bundle Identification 3-N
(Note 2)

NOTES:
1. Bundle identification is limited to a length of 50 octets.

2. Bundle identification must be formatted as a null terminated text string
consisting of the ASCII characters A-Z, a-z, 0-9, and the printable characters
`~!@#$%^&*()-_=+[]{}\|;:'",.<>/?.

Figure 8
Bundle Identification Information Field



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

3.4.2 Link Identification Information Field
The Link Identification Information Field provides information used to report the identity of a bundle link
when error conditions arise at an endpoint.  One example is the inadvertent assignment of a link to the wrong
bundle.  The endpoint that detects the mismatch uses the information in the received Link Identification
Information Field (e.g., a port identifier) to create a report that is meaningful to the layer management
function.

The value used for link identification has significance for both local and remote endpoints.  The local endpoint
assigns the link identification to signify that this link is part of a certain bundle, while the remote end uses the
link identification to indicate an error if the link in question has an error associated with it, i.e.
misconfiguration.   The value may or may not be the same as the value created by the other endpoint on the
link.

Assignment of the bundle link identification value is performed via the layer management function.

Figure 9 shows the Link Identification Information Field.

Bits
8 7 6 5 4 3 2 1 Octets
0 0 0 0 0 0 1 0

Link Identification Information Field
1

Length 2
(Note 1)

Link Identification 3-N
(Note 2)

NOTES:
1. Link identification is limited to a length of 50 octets.

2. Link identification must be formatted as a null terminated text string consisting
of the ASCII characters A-Z, a-z, 0-9, and the printable characters
`~!@#$%^&*()-_=+[]{}\|;:'",.<>/?.

Figure 9
Link Identification Information Field



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

3.4.3 Magic Number Information Field
The Magic Number Information Field provides information required for looped-back bundle link detection.

Figure 10 shows the Magic Number Information Field.

Bits
8 7 6 5 4 3 2 1 Octets
0 0 0 0 0 0 1 1

Magic Number Information Field
1

Length 2

Magic Number (MSB) 3

Magic Number 4

Magic Number 5

Magic Number (LSB) 6

Figure 10
Magic Number Information Field

3.4.4 Timestamp Information Field
The Timestamp Information Field may be included in an ADD_LINK or HELLO message to encode a local
time value that represents the time of transmission.  A peer that receives this information field in an
ADD_LINK or HELLO message must include the information field in the ADD_LINK_ACK or
HELLO_ACK message respectively.

The contents of the Timestamp Information Field are transmitted unchanged back to the originating endpoint.
The Timestamp represents a local clock value at the time of ADD_LINK or HELLO message transmission.
The value is echoed in the ADD_LINK_ACK or HELLO_ACK message.  The use of the timestamp field is
explained in Section 4.2.2.4. Granularity and interpretation of the Timestamp Information Field is
implementation specific.

Figure 11 shows the Timestamp Information Field.

Bits
8 7 6 5 4 3 2 1 Octets
0 0 0 0 0 1 0 1

Timestamp Information Field
1

Length 2
(Note 1)

Transmit Timestamp (MSB) 3

Transmit Timestamp 4

Transmit Timestamp (LSB) N

NOTES:
1. The maximum length is 14 octets. Format is implementation specific.

Figure 11
Timestamp Information Field



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

3.4.5 Vendor Extension Information Field
The Vendor Extension Information Field extends bundle link procedures to meet vendor-specific requirements.
The content of the sub-code and vendor-supplied values sub-fields are not standardized.

Figure 12 shows the Vendor Extension Information Field.

Bits
8 7 6 5 4 3 2 1 Octets
0 0 0 0 0 1 1 0

Vendor Extension Information Field
1

Length 2

Organizationally Unique Identifier (MSB) 3
(Note 1)

Organizationally Unique Identifier 4

Organizationally Unique Identifier (LSB) 5

Sub-Code 6
(Note 2)

Vendor Supplied Values 7-N

NOTES:
1. The IEEE assigns the OUI.  The three-octet Organizationally Unique Identifier

(OUI) identifies the organization that defines the format of this vendor
supplied information field.

2. Sub-code is not standardized.  Sub-code values are OUI-specific.

Figure 12
Vendor Extension Information Field



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

3.4.6 Cause Information Field
The Cause Information Field informs the peer endpoint of the reason for transmission of the ADD_LINK_REJ
or REMOVE_LINK message.

Figure 13 shows the Cause Information Field.

Bits
8 7 6 5 4 3 2 1 Octets
0 0 0 0 0 1 1 1

Cause Information Field
1

Length 2
(Note 1)

Cause 3
(Note 2)

Diagnostic Information 4 - N
(Note 3)

NOTES:
1. The maximum length is 53 octets.

2. Valid cause values are described in Section 4.3.9.

3. Diagnostic values are described in Section 4.3.9.  This variable length field
may be empty.  When empty, no octets are included and the Information Field
consists of the tag, length, and cause fields.

Figure 13
Cause Information Field

4 Procedures

4.1 Overview
The bundle contains and controls one or more bundle links supporting the transfer of MFR frames.  Bundle
procedures provide for the following activities:

§ addition of bundle links to bundle operation,

§ graceful removal of bundle links from bundle operation,

§ interfacing with layer management functions,

§ accepting frames from the Q.922 data link layer for transmission on the bundle interface,

§ operating frame fragmentation procedures,

§ scheduling frames for transmission on individual bundle links, and

§ reassembling received frame fragments for forwarding to the Q.922 data link layer.

Each of the bundle's bundle links operates a Link Integrity Protocol that provides the following features:

§ confirmation of bundle link frame processing capability;

§ bundle membership verification;

§ loopback detection;

§ differential delay measurement;

§ coordinated bundle link removal;



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

§ vendor specific extensions; and

§ symmetric message exchange between bundle link endpoints.

The bundle and bundle link procedures are described in the following sections.

4.2 Bundle Procedures

4.2.1 General
The bundle procedures operate within the bundle.  No messages are exchanged between the bundle peers.

An interface connected by multilink frame relay consists of two bundle endpoints joined by one or more
bundle links.  The network management function provisions the bundle.   The network management function is
beyond the scope of this agreement.  The bundle link endpoints must be provisioned consistently with each
other (e.g. bundle links originating on one endpoint must terminate on the other – the links cannot terminate on
a third bundle endpoint.)

4.2.2 Bundle Management

4.2.2.1 Frame Bearing Capability
A bundle may be provisioned with a minimum acceptable level of operational bandwidth for the bundle.
Operational bandwidth is available from a bundle link when BL_ACTIVATE indication is received.  The total
operational bandwidth available is calculated by adding the operational bandwidth available from each bundle
link.

Four classes of bandwidth requirements are shown in Table 2.  One class is selected to determine the criteria
that trigger activation or deactivation of the emulated physical interface.

When the bundle's operational bandwidth meets the criteria for a selected class, the bundle must send a
PH_ACTIVATE to the data link layer.

When the bundle's operational bandwidth fails to meet the criteria for a selected class, the bundle must send a
PH_DEACTIVATE to the data link layer.

Class Description Criteria for PH_ACTIVATE/PH_DEACTIVATE

PH_ACTIVATE: One or more bundle links indicate BL_ACTIVATE.Class A
(Default)

Single link

PH_DEACTIVATE: All bundle links indicate BL_DEACTIVATE.

PH_ACTIVATE: All bundle links indicate BL_ACTIVATE.Class B All links

PH_DEACTIVATE: Any bundle link indicates BL_DEACTIVATE.

A minimum threshold is provisioned through network management
procedures.  The threshold represents the minimum number of bundle links
that must indicate BL_ACTIVATE.

PH_ACTIVATE: Sufficient bundle links indicate BL_ACTIVATE.

Class C Threshold

PH_DEACTIVATE: Insufficient bundle link indicates
BL_DEACTIVATE.

PH_ACTIVATE: Implementation specific.Class D Custom

PH_DEACTIVATE: Implementation specific.

Table 2
Class of Bandwidth Requirements



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

4.2.2.2 Bundle Link Activation

Individual links of the bundle are activated upon receipt of the MB_ADD_LINK request from the bundle's
layer management.  The bundle issues a BL_ACTIVATE request to the target bundle link.  Upon successful
completion of bundle link initialization procedures, the BL_ACTIVATE confirmation will be sent to the
bundle.  Following receipt of the BL_ACTIVATE confirmation from the bundle link, the bundle sends and
receives frames on the bundle link.

4.2.2.3 Bundle Link Deactivation

An individual bundle link may send an unsolicited BL_DEACTIVATE indication in the event of a physical
interface error, suspected looped back state, or link deactivation from the peer endpoint (See Section 4.3.2.2).
Upon receipt of any BL_DEACTIVATE indication, the bundle must not send frames to the unavailable bundle
link.  When the error condition ends, the bundle link issues a BL_ACTIVATE indication to the bundle.  At this
time, the bundle may resume sending and receiving frames on the bundle link.

Individual links of the bundle may be deactivated upon receipt of the MB_REMOVE_LINK request from the
bundle's layer management.  The bundle issues a BL_DEACTIVATE request to the target bundle link.
Following this request, the bundle must not send any frames on the bundle link.  However, the bundle must
continue to accept frames while bundle link deactivation procedures are in progress.  Upon completion, the
BL_DEACTIVATE confirmation will be sent to the bundle.  Upon receipt of this confirmation, the bundle will
no longer receive frames from the bundle link.

If the MB_REMOVE_LINK request is received from the bundle's layer management when the bundle link has
reported a BL_DEACTIVATE indication, the bundle should send a BL_DEACTIVATE request to the bundle
link.  This request will prevent the inadvertent re-establishment of bundle link operation when the error
condition clears.

4.2.2.4 Use of Timestamp Field
Granularity and interpretation of the Timestamp Information Field is implementation specific.

The primary use of the Timestamp Information Field is to measure the differential delay between bundle links
in a bundle.

The Timestamp Information Field may be used to determine if a bundle link has a much more substantial
differential delay than other bundle links in the same bundle.  The implementing endpoint then can determine
if the differential delay is in a tolerable range and decide to remove or keep the bundle link in operation.

4.2.3 Frame Processing
The bundle must support the FRF.12 [3] user-to-network and network-to-network interface fragmentation
techniques to format all frames sent to bundle links.  The degree of fragmentation supported is implementation
specific and must be agreed on by bi-lateral agreement.  The default degree of fragmentation is no
fragmentation (B=1, E=1).  The degree of fragmentation is established via network management procedures. A
MFR bundle must not transmit MFR fragmentation frames with (B)egin or (E)nd bits set to zero without a bi-
lateral agreement between endpoints  The bundle may send the MFR frames on any bundle link that is in the
state up.

4.2.3.1 Frame Transmission
The data link layer sends frames to the bundle by sending a PH_DATA request.  The frame is formatted as
described in Section 3.1.  Sequence numbers are assigned using the rules provided in Section 5.1 of FRF.12[3].

Frames received from the data link layer may be fragmented when both peer bundles support fragmentation.
The fragmentation procedure described in Section 6.1 of FRF.12 is followed.  If multiple fragments are created
for a single frame received from the data link layer, the fragments may be transmitted on different bundle
links.



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

The bundle may send the MFR frames on any bundle link that is in the state up.  Implementations should
balance the load between the bundle links.

4.2.3.2 Frame Reception
The bundle link sends a BL_DATA indication to the bundle when a MFR frame fragment is received.

The bundle must reassemble the frame fragments using the procedure described in Section 6.2 of FRF.12. The
fragments may arrive out of order when transmitted over multiple bundle links.  The bundle must preserve the
frame order for all frames associated with a single DLCI.

The bundle sends a reassembled frame to the data link layer in a PH_DATA indication.

Re-assembly of a frame requires reception of all fragments.  In contrast to FRF.12, the sequence number is not
a sufficient indication of fragment loss.  This is a consequence of using multiple links.  Implementations must
provide detection of fragment loss.  The mechanism for loss detection is implementation specific.  Some
examples of loss detection mechanisms are described in Multilink PPP [6].

Implementations utilizing frame assembly timers should carefully select the time interval to avoid premature
detection of loss. An example algorithm for creating a time interval (Ti) is provided in Figure 14.  In this
example, the size used for a "typical" frame is implementation specific.

TemTi
Te

+=
=

sec15
linkslowest over  frame typical transmit  torequired Time 

Figure 14
Example Calculation of Frame Assembly Time Interval

Implementations may utilize longer time intervals to accommodate variations in link propagation
characteristics.

4.3 Bundle Link Procedures

4.3.1 General
The Link Integrity Protocol operates on a physical interface (e.g. DS0, DS1, E1(FRF.14[5])).  Control
messages (e.g., ADD_LINK) never enter the frame relay network.

A message received from the remote endpoint is validated according to the message format described in
Section 2.4.  Any unrecognized or errored message must be silently discarded unless otherwise specified in the
following procedures. Information about invalid messages should be communicated to the layer management
function.

The MFR Link Integrity Protocol operates independently on each link of a bundle.

The MFR Link Integrity Protocol operates between the two endpoints of a bundle link.   The endpoints
function as symmetric peer entities.

MFR implementations must support the MFR Link Integrity Protocol.

4.3.2 Addition of Bundle Link to Bundle Operation

4.3.2.1 Establishment Procedures
These procedures shall be used to establish bundle link operation between two endpoints following receipt of
the BL_ACTIVATE request from the bundle.



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

4.3.2.1.1 Initiating Endpoint

Each bundle link endpoint shall initiate a request for bundle link operation with its peer by transmitting the
ADD_LINK message. All existing exception conditions shall be cleared, the retransmission counter shall be
reset (counter N_MAX_RETRY is defined in Section 4.3.8.3), and timer T_ACK shall be started (timer
T_ACK is defined in Section 4.3.8.2).

A bundle link endpoint shall also transmit the ADD_LINK message and start timer T_ACK whenever the
T_HELLO timer expires while in add sent, ack rx, or add rx states.

The T_HELLO timer is used as a pacing timer that is used to send out HELLO messages.

4.3.2.1.2 Responding Endpoint
If a bundle link endpoint receives a valid ADD_LINK message and it is able to enter into the bundle link state
up, it shall respond with an ADD_LINK_ACK message.

A bundle link endpoint that was removed from bundle operation by a BL_DEACTIVATE.req  shall respond to
the ADD_LINK message with an ADD_LINK_REJ message. The ADD_LINK_REJ message must contain the
LINK_IDLE cause code.

A bundle link endpoint must receive two messages from its peer before transitioning to the bundle link state
up, as described in the following paragraphs.

One message must be a valid ADD_LINK message sent by the peer.  When a valid ADD_LINK message is
received, the endpoint enters the bundle link state add rx.  A transition to the bundle link state up is possible
following reception of an ADD_LINK_ACK message.

The other message is an ADD_LINK_ACK message sent by the peer in response to an ADD_LINK message
sent by the bundle link endpoint.  When an ADD_LINK_ACK message is received, the endpoint stops timer
T_ACK, starts timer T_HELLO, and enters the bundle link state ack rx.  A transition to the bundle link state
up is possible following reception of a valid ADD_LINK message.

The two messages may be received in any order.

Upon reception of both the ADD_LINK message and the ADD_LINK_ACK message, the bundle link
endpoint shall:

1. reset timer T_ACK;

2. start timer T_HELLO (timer T_HELLO is defined in Section 4.3.8.1);

3. enter the state up; and

4. issue a BL_ACTIVATE.cnf to the bundle.

4.3.2.2 Receiving ADD_LINK_REJ Messages

A bundle link endpoint receiving an ADD_LINK_REJ message shall examine the cause information.  If the
cause code is UNKNOWN_VENDOR_EXTENSION, the bundle link endpoint shall not include the rejected
Vendor Extension Information Field in subsequent ADD_LINK messages.  All implementations must be
capable of operating without vendor extensions.

Upon reception of all ADD_LINK_REJ messages, the originator of the ADD_LINK message shall:

1. remain in the add sent or add rx state;

2. transmit the ADD_LINK message;

3. start timer T_ACK; and

4. send a BL_DEACTIVATE indication to the bundle with the cause code and diagnostics, if diagnostics are
present in the message.  The bundle should issue a MB_ERROR indication to report the failure to layer
management.

Refer to Table 4 for a list of the cause values and the contents of the diagnostic field.



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

4.3.2.3 Procedure on Expiry of Timer T_ACK

If timer T_ACK expires before a bundle link endpoint receives an ADD_LINK_ACK message, the bundle link
endpoint shall transmit the ADD_LINK message by starting timer T_HELLO.

The above procedure continues T_ACK   until one of the following events occurs:

1. ADD_LINK_ACK message is received;

2. the bundle issues a BL_DEACTIVATE request primitive; or

3. the physical layer issues a PH_DEACTIVATE indication.

4.3.2.4 Configuration Mismatch Detection
All bundle links  of a MFR must use the same value in the Bundle identification Information Field.  The local
and remote ends of a bundle link may have different Bundle Identification values as long as the values are
consistent with the other bundle links at a specific end of the bundle. Figure 15 illustrates an instance where
one device, LONDON, is misconfigured.  The link FOX assigned to bundle MARS should be assigned to
bundle PLUTO.  Device AMSTERDAM will report a bundle consistency error when the ADD_LINK message
containing bundle MARS is received on a bundle link assigned to bundle ALPHA when prior ADD_LINK
messages contained the bundle identifier PLUTO.  Note that if the first ADD_LINK message was received
from bundle MARS instead of bundle PLUTO, then the ADD_LINK from one of bundle PLUTO's links would
fail.  The consistency check is performed based on the first ADD_LINK to arrive.  The bundle identification
contained in the first ADD_LINK message is always considered the true bundle.

Useful Bundle Identification values include network node identifiers, system serial numbers, and network
addresses.  A device should use a unique bundle identifier for each bundle if more than one bundle is
supported between two devices.

Bundle ALPHA

Device:  AMSTERDAM

Bundle PLUTO

Bundle MARS

 Bundle: ALPHA
Link: RED

Bundle: ALPHA
Link: GREEN

Bundle: ALPHA
Link: BLACK

 Bundle: PLUTO
Link: BIRD

 Bundle: PLUTO
Link: DOG

 Bundle: MARS
Link: FOX

Device:  LONDON
Misconfigured

Bundle

Figure 15
Bundle Configuration Error Example

A received ADD_LINK message containing an inconsistent Bundle Identification value or Endpoint
Capabilities encoding shall be processed as an invalid ADD_LINK message using the procedure described in
Section 4.3.2.5.

4.3.2.5 Receiving Invalid ADD_LINK Messages
A received ADD_LINK message may be considered invalid when:

1. the received bundle identification is not consistent with the bundle identification received from the
other bundle link  of the bundle, or



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

2. if the Vendor Extension Information exists and specifies an unknown OUI or sub-code.

A bundle link endpoint receiving an invalid ADD_LINK message shall respond with an ADD_LINK_REJ
message.

Information about the invalid ADD_LINK message is communicated to the bundle by issuing a
BL_DEACTIVATE indication.  Information should include the cause code and diagnostics.  The bundle
should issue a MB_ERROR indication to report the failure to layer management.

The ADD_LINK_REJ message must also contain the cause for the rejection.   Refer to Table 4 for a list of the
cause values and the contents of the diagnostic field.

4.3.3 Bundle Link Operation

4.3.3.1 Frame Transfer

The bundle forwards a MFR frame fragment to the bundle link by issuing a BL_DATA request primitive. If
the bundle link is in the state up, the bundle link issues a PH_DATA request to the physical layer.

MFR frame fragments received on a bundle's physical interface are forwarded to the bundle link via a
PH_DATA indication primitive.  If the bundle link is in the state add_rx, up or idle pending, the received
frame is forwarded to the bundle for reassembly.  The bundle link forwards the fragment by issuing a
BL_DATA indication to the bundle.

A MFR frame fragment that is received at a bundle link endpoint in all other states must be silently discarded.

4.3.3.2 Bundle Link Integrity Procedure
These procedures test bundle link integrity during normal operation.  A bundle link endpoint shall transmit the
HELLO message following expiration of timer T_HELLO.  Timer T_ACK shall be started.

A bundle link endpoint receiving a valid HELLO message while in the up state shall respond with a
HELLO_ACK message.  All HELLO messages received when the bundle link is not in the up state must be
ignored.

A bundle link endpoint receiving a valid HELLO_ACK message shall:

1. reset RETRY counter;

2. stop timer T_ACK; and

3. start timer T_HELLO.

4.3.3.3 Procedure on Expiry of Timer T_ACK

Upon expiration of timer T_ACK the bundle link endpoint shall test the RETRY count.

If the RETRY count is less than N_MAX_RETRY, the bundle link endpoint shall:

1. send HELLO message;

2. increment RETRY count by one; and

3. start timer T_ACK;

If RETRY count is equal to N_MAX_RETRY, the bundle link endpoint shall:

1. send ADD_LINK message;

2. reset RETRY count;

3. start timer T_ACK; and

4. enter the state add sent.



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

4.3.4 Removal of Bundle Link from Bundle Operation

4.3.4.1 Release Procedures
These procedures remove a bundle link from bundle operation following receipt of the BL_DEACTIVATE
request from the bundle.

4.3.4.1.1 Initiating Endpoint
When the BL_DEACTIVATE request is received from the bundle while the bundle link endpoint is in the add
sent, ack rx, and add rx states, the bundle link endpoint shall:

1. transmit the REMOVE_LINK message;

2. clear all existing exception conditions;

3. reset RETRY counter;

4. start timer T_ACK;

5. send a BL_DEACTIVATE confirmation to the bundle with a cause of LINK_IDLE; and

6. enter the state idle.

When the BL_DEACTIVATE request is received in the up state, the bundle link endpoint shall:

1. transmit the REMOVE_LINK message;

2. clear all existing exception conditions;

3. reset RETRY counter;

4. start timer T_ACK;

5. enter the state idle pending.

NOTE:  While in the state idle pending all MFR fragmentation frames received on the
bundle link must be forwarded to the bundle via the BL_DATA indication.  The bundle must
not transmit any MFR fragmentation frames on a bundle link that is in the state idle pending.

4.3.4.1.2 Responding Endpoint
A bundle link receiving a REMOVE_LINK message, in  states:  add sent, ack rx, add rx, or  up, shall:

1. respond with a REMOVE_LINK_ACK message;

2. reset RETRY count;

3. stop timer T_ACK;

4. start timer T_HELLO to resume ADD_LINK;

5. send a BL_DEACTIVATE indication to the bundle, with a cause code of LINK_IDLE; and

6. enter the state add sent.

A bundle link endpoint receiving a REMOVE_LINK message when in the state idle pending  shall:

1. respond with a REMOVE_LINK_ACK message;

2. send a BL_DEACTIVATE indication to the bundle, with a cause code of LINK_IDLE; and

3. enter the state idle.

A bundle link endpoint receiving a REMOVE_LINK message when in the state idle shall respond with a
REMOVE_LINK_ACK message and remain in the state idle.

Upon reception of a REMOVE_LINK_ACK message, the initiator of the REMOVE_LINK message shall:



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

1. stop timer T_ACK;

2. send a BL_DEACTIVATE indication to the bundle, with a cause code of LINK_IDLE; and

3. enter the state idle.

4.3.4.2 Procedure on Expiry of Timer T_ACK

Upon expiration of timer T_ACK while the bundle link endpoint is in the state idle pending, the bundle link
endpoint shall test RETRY count.

If the RETRY  count is less than N_MAX_RETRY, the bundle link endpoint shall:

1. send REMOVE_LINK message;

2. increment RETRY  count; and

3. start timer T_ACK;

If the RETRY count is equal to N_MAX_RETRY, the bundle link endpoint shall:

1. reset RETRY count;

2. send a BL_DEACTIVATE indication to the bundle, with a cause code of LINK_IDLE; and

3. enter the state idle.

4.3.5 Loss of Physical Layer When Administratively Up
Upon receipt of a PH_DEACTIVATE indication from the physical layer, a bundle link endpoint in the add
sent, ack rx, add rx, or up states shall:

1. stop all timers;

2. send a BL_DEACTIVATE indication to the bundle, with a cause code of LINK_DOWN; and

3. enter the state down.

Upon restoration of the physical layer, the bundle link endpoint shall:

1. send ADD_LINK message;

2. start timer T_ACK (T_HELLO will commence on expiration of T_ACK); and

3. enter the state add sent.

4.3.6 Loss of Physical Layer When Administratively Down
Upon receipt of a PH_DEACTIVATE indication from the physical layer , a bundle link endpoint in the idle
pending or idle states shall:

1. stop all timers;

2. reset RETRY count;

3. send a BL_DEACTIVATE indication to the bundle, with a cause code of LINK_DOWN; and

4. enter the state down idle.

Upon restoration of the physical layer, the bundle link endpoint shall enter the idle state.



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

4.3.7 Looped-back Link Detection Procedure
Looped-back bundle link is detected through examination of the Magic Number Information Field contained in
every message.  An endpoint must select the magic number based on the criteria described in Section 6.4 of
PPP[10].

Any message received, which contains a magic number identical to the magic number last transmitted by the
bundle link endpoint, may indicate a loopback condition.  This message must be silently discarded.  The local
endpoint must select a different magic number for use in the transmission of subsequent messages.

Information about the possible looped-back bundle link should be communicated to the bundle when the
bundle link becomes deactivated due to the suspected looped-back condition.  The bundle should report this to
layer management via the MB_ERROR indication primitive.

4.3.8 System Parameters
The system parameters that apply to the MFR Link Integrity Protocol are listed below. Table 3 lists the default
values and acceptable ranges for these system parameters.

4.3.8.1 Timer T_HELLO
The T_HELLO timer controls the rate at which HELLO messages are sent.  Following a period of T_HELLO
duration, a HELLO message is transmitted according to the procedures described in Section 4.3.2.1.

4.3.8.2 Timer T_ACK
The T_ACK timer specifies the maximum time period to wait for an ADD_LINK_ACK, HELLO_ACK or
REMOVE_LINK_ACK message.

4.3.8.3 Maximum Retransmission Count N_MAX_RETRY
The N_MAX_RETRY count limits the number of retransmission attempts for consecutive HELLO or
REMOVE_LINK messages following expiration of timer T_ACK.

Parameter Default Value Minimum Value Maximum Value

Timer T_HELLO 10 seconds 1 second 180 seconds

Timer T_ACK 4 seconds 1 second 10 seconds

Count N_MAX_RETRY 2 1 5

Table 3
System Parameters



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

4.3.9 Error Conditions
Each error condition is identified by a cause value that is included in the Cause Information Field.  Some cause
values result in the inclusion of additional diagnostic information in the variable length diagnostic field of the
Cause Information Field.  If the diagnostic field is not used it is empty.  The cause values are defined in Table
4.

Error Description Cause Diagnostic Field Usage

INCONSISTENT_BUNDLE Possible configuration mismatch
detected.

1 Expected Bundle
Identification value as
provisioned at the
endpoint sending the
Cause Information
Field.  Refer to Note 2,
Figure 8for the format
of the field.

UNKNOWN_VENDOR Unrecognized OUI in a received
Vendor Specific Information
Field.

2 None

LINK_IDLE The bundle link is not
operational.

3 None

LINK_DOWN The bundle link physical layer is
down.

4 None

DIFFERENTIAL_DELAY The bundle link differential
delay exceeds the maximum
allowed.

5 None

LOOPBACK_DETECTED The bundle link has detected a
potential loopback condition.

6 None

OTHER Generic failure cause described
by text in diagnostic field.

7 Textual description of
failure cause.  Refer to
Note 2, Figure 8for the
format of the field.

Table 4
Cause Values



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

A Informative Annex – Bundle Link Protocol State Machine
The purpose of this annex is to provide one example of a state machine representation of the bundle link
procedures, to assist in the understanding of this agreement.  This example of the bundle link procedures may
not meet all the requirements specified in the procedure section (Section 4).  The text description of the
procedures is definitive.

A simplified version (for clarity) of the state machine for the MFR Link Integrity Protocol is shown in Figure
16.  The initial state is down.   The picture is divided into four quadrants for clarity:

Physically Up, Administratively Up The normal operational mode for a bundle link.

Physically Up, Administratively Down Bundle link is not participating in bundle
operation.

Physically Down, Administratively Up The bundle link does not support frame
transmission.

Physically Down, Administratively Down Bundle link is not participating in bundle
operation and the link is physically unable to
support frame transmission.

Figure 16
MFR Link Integrity Protocol State Machine

Table 5, Table 6, and Table 7 describe the state transitions.  Refer to the following sections for a description of
the states, events, and actions.  A transition to the next state is indicated by the “=>” symbol followed by the
next state name.  A “-“ symbol indicates an unexpected event and state combination.

BL_DEACTIVATE req

ADD_LINK_ACK

UP

IDLE

DOWN

DOWN
IDLE

ADD_LINK (V)
ADD_LINK (I)

REMOVE_LINK
T_ACK_EXP (MAX)

ADD_LINK (I)
ADD_LINK_REJ
REMOVE_LINK

ADD_LINK (I)
REMOVE_LINK

PH_DEACTIVATE ind

ADD_LINK (V) ADD RX

BL_DEACTIVATE req

ADD_LINK (V)

REMOVE_LINK_ACK
T_ACK_EXP (MAX)

PH_DEACTIVATE ind

PH_DEACTIVATE ind

PH_DEACTIVATE ind
BL_ACTIVATE req

BL_DEACTIVATE req

PH_DEACTIVATE ind

PH_DEACTIVATE ind

IDLE
PENDING

BL_ACTIVATE req

BL_DEACTIVATE req

BL_DEACTIVATE req

PH_ACTIVATE ind

PH_ACTIVATE ind

A
dm

inistratively U
p

PHY Down PHY Up

A
dm

inistratively D
ow

n

ADD ACK
RX

ADD_LINK_ACK

ADD SENT



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

Event add sent ack rx add rx up idle pending idle
ADD_LINK (Valid) Send ADD_LINK_ACK

=> add rx
stop T_ACK
send ADD_LINK_ACK
start T_HELLO
BL_ACTIVATE.cnf
=> up

send ADD_LINK_ACK
=> add rx

send ADD_LINK
start T_ACK
=> add sent

send ADD_LINK_REJ
=> idle pending

send ADD_LINK_REJ
=> idle

ADD_LINK (Invalid) BL_DEACTIVATE.ind
send ADD_LINK_REJ
=> add sent

BL_DEACTIVATE.cnf
send ADD_LINK_REJ
send ADD_LINK
start T_ACK
=> add sent

BL_DEACTIVATE.cnf
send ADD_LINK_REJ
send ADD_LINK
start T_ACK
=> add sent

BL_DEACTIVATE.cnf
send ADD_LINK_REJ
send ADD_LINK
start T_ACK
=> add sent

- -

ADD_LINK_ACK Stop T_ACK
Start T_HELLO
=> ack rx

start T_HELLO
=> ack rx

stop T_ACK
start T_HELLO
BL_ACTIVATE.cnf
=> up

- => idle pending => idle

ADD_LINK_REJ BL_DEACTIVATE.cnf
send ADD_LINK
Start T_ACK
=> add sent

BL_DEACTIVATE.cnf
send ADD_LINK
start T_ACK
=> add sent

BL_DEACTIVATE.cnf
send ADD_LINK
start T_ACK
=> add rx

- => idle pending => idle

HELLO => add sent => ack rx => add rx send HELLO_ACK
=> up

=> idle pending => idle

HELLO_ACK => add sent => ack rx => add rx stop T_ACK
start T_HELLO
RETRY = 0
=> up

=> idle pending => idle

REMOVE_LINK Stop T_ACK
send
REMOVE_LINK_ACK
start T_HELLO
RETRY = 0
=> add sent

stop T_ACK
send
REMOVE_LINK_ACK
start T_HELLO
RETRY = 0
=> add sent

stop T_ACK
send
REMOVE_LINK_ACK
start T_HELLO
RETRY = 0
=> add sent

stop T_ACK
send
REMOVE_LINK_ACK
start T_HELLO
RETRY = 0
=> add sent

send REMOVE_LINK_ACK
BL_DEACTIVATE.cnf
=> idle

send REMOVE_LINK_ACK
=> idle

REMOVE_LINK_ACK => add sent - - - stop T_ACK
BL_DEACTIVATE.ind
=> idle

=> idle

T_HELLO_EXP Send ADD_LINK
start T_ACK
=> add sent

send ADD_LINK
start T_ACK
=> ack rx

send ADD_LINK
start T_ACK
=> add rx

send HELLO
start T_ACK
=> up

- -

T_ACK_EXP
RETRY <
N_MAX_RETRY

Start T_HELLO
=> add sent

start T_HELLO
=> ack rx

start T_HELLO
=> add rx

send HELLO
RETRY = RETRY + 1 start
T_ACK
=> up

send REMOVE_LINK
RETRY = RETRY + 1
start T_ACK
=> idle pending

-

T_ACK_EXP
RETRY =
N_MAX_RETRY

- - - send ADD_LINK
start T_ACK
RETRY = 0
=> add sent

RETRY = 0
BL_DEACTIVATE.ind
=> idle

-

Table 5
MFR Link Integrity Protocol State Transitions – Normal States – Part 1

A “-“ symbol indicates an unexpected event and state combination.



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

Event add sent ack rx add rx Up idle pending idle
PH_DEACTIVATE.ind stop T_ACK

stop T_HELLO
BL_DEACTIVATE.cnf =>
down

stop T_ACK
stop T_HELLO
BL_DEACTIVATE.cnf =>
down

stop T_ACK
stop T_HELLO
BL_DEACTIVATE.cnf =>
down

stop T_ACK
stop T_HELLO
RETRY = 0
BL_DEACTIVATE.cnf
=> down

stop T_ACK,

RETRY = 0
BL_DEACTIVATE.cnf =>
down_idle

=> down_idle

PH_ACTIVATE.ind - - - - - -
PH_DATA.ind - - - BL_DATA.ind

=> up
BL_DATA.ind
=> idle pending

-

BL_ACTIVATE.req - - - - - send ADD_LINK
start T_ACK
=> add sent

BL_DEACTIVATE.req stop T_HELLO
stop T_ACK
send REMOVE_LINK
BL_DEACTIVATE.cnf
=> idle

stop T_HELLO
stop T_ACK
send REMOVE_LINK
BL_DEACTIVATE.cnf
=> idle

stop T_HELLO
stop T_ACK
send REMOVE_LINK
BL_DEACTIVATE.cnf
=> idle

send REMOVE_LINK
stop T_HELLO
start T_ACK
RETRY = 0
=> idle pending

- -

BL_DATA.req - - - send DATA
=> up

- -

Table 6
MFR Link Integrity Protocol State Transitions – Normal States – Part 2

A “-“ symbol indicates an unexpected event and state combination.

Event Down down idle
ADD_LINK (Valid) - -
ADD_LINK (Invalid) - -
ADD_LINK_ACK - -
ADD_LINK_REJ - -
HELLO - -
HELLO_ACK - -
REMOVE_LINK - -
REMOVE_LINK_ACK - -
T_HELLO_EXP - -
T_ACK_EXP RETRY < N_RETRY_MAX - -
T_ACK_EXP RETRY = N_RETRY_MAX - -
PH_DEACTIVATE.ind => down -
PHY_ACTIVATE.ind send ADD_LINK

start T_ACK
=> add sent

=> idle

PH_DATA - -
BL_ACTIVATE.req => down => down
BL_DEACTIVATE.req BL_DEACTIVATE.cnf

=> down idle
BL_DEACTIVATE.cnf
=> down idle

BL_DATA.req - -

Table 7
MFR Link Integrity Protocol State Transitions – Down States

A “-“ symbol indicates an unexpected event and state combination.





Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

A.1 States
The MFR Link Integrity Protocol state machine states are defined as follows:

down The bundle link is physically incapable of frame operation. The bundle link is not active
in bundle operation.

down idle The bundle link is physically incapable of frame operation while also administratively
removed from bundle operation.

add sent The bundle link is available for frame operation and contact with the peer initiated.

ack rx The bundle link has received the ADD_LINK_ACK from the peer and now awaits
receipt of an ADD_LINK message.

add rx The bundle link has received and accepted an ADD_LINK message from the peer and
now awaits receipt of an ADD_LINK_ACK message. Frames may be received from the
peer when the bundle link is in this state.

up The bundle link is fully operational and joined to bundle operation.

idle pending The bundle link is in the process of being removed from bundle operation. Frames
received from the peer are processed until the peer acknowledges the REMOVE_LINK
message.  No additional frames are sent to the peer.

idle The bundle link is removed from bundle operation.

A.2 Events
The MFR Link Integrity Protocol state machine events are generated by messages received from the peer, timer
expirations, physical layer indications, and layer management primitives.  The events are described as follows:

ADD_LINK (valid) A valid ADD_LINK message is received and validated.  Validation includes the bundle
identification and magic number.

ADD_LINK (invalid) An ADD_LINK message is received with invalid bundle identification or a magic
number that indicates potential loopback.

ADD_LINK_ACK An ADD_LINK_ACK message is received from the peer.

ADD_LINK_REJ An ADD_LINK_REJ message is received from the peer.

HELLO A HELLO message is received from the peer.

HELLO_ACK A HELLO_ACK is received is received from the peer.

REMOVE_LINK A REMOVE_LINK message is received from the peer.

REMOVE_LINK_ACK A REMOVE_LINK_ACK message is received from the peer.

T_HELLO_EXP The HELLO polling timer T_HELLO has expired.

T_ACK_EXP
RETRY < N_MAX_RETRY

The acknowledgment response timer T_ACK has expired with additional retry attempts
available.

T_ACK_EXP
RETRY = N_MAX_RETRY

The acknowledgment response timer T_ACK has expired and all retry attempts are now
exhausted.



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

PH_DEACTIVATE ind The physical layer does not support transmission of frames.

PH_ACTIVATE ind The physical layer now supports transmission of frames.

PH_DATA ind A DATA frame is received from the peer.

BL_ACTIVATE req Bundle requests addition of the bundle link to bundle operation.

BL_DEACTIVATE req Bundle requests removal of the bundle link from bundle operation.

BL_DATA req Bundle requests transmission of a frame fragment.

A.3 Actions
The MFR Link Integrity Protocol state machine actions are defined as follows:

start T_HELLO Start the T_HELLO polling interval timer.

stop T_HELLO Stop the T_HELLO polling interval timer.

start T_ACK Start the T_ACK acknowledgment response timer.

stop T_ACK Stop the T_ACK acknowledgment response timer.

send ADD_LINK Transmit the ADD_LINK message to the peer.

send ADD_LINK_ACK Transmit the ADD_LINK_ACK message to the peer.

send ADD_LINK_REJ Transmit the ADD_LINK_REJ message to the peer.

send HELLO Transmit the HELLO message to the peer.

send HELLO_ACK Transmit the HELLO_ACK message to the peer.

send REMOVE_LINK Transmit the REMOVE_LINK message to the peer.  Sent to reject an invalid HELLO
message or to remove a bundle link from a bundle.

send REMOVE_LINK_ACK Transmit the REMOVE_LINK_ACK message to the peer. Sent following last frame in
transmit.

send DATA Transmit the frame fragment to the peer.

RETRY = 0 Reset the retransmission counter to a value of zero.

RETRY = RETRY + 1 Increment the retransmission counter by one.

BL_DATA ind Issue a bundle layer primitive indication of frame receipt.

BL_ACTIVATE cnf Issue an activation confirmation to the bundle.

BL_DEACTIVATE cnf Issue a deactivation confirmation to the bundle

BL_DEACTIVATE ind Issue a deactivation indication to the bundle. Deactivation may be in response to a
request from the bundle or as the result of a failure.  The primitive provides the cause
information to discriminate between deactivation triggers.



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

FRF. 16 Errata Sheet

Frame Relay Forum Technical Committee
October 1999





Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

ERRATA

Figure 7 of Section 3.2 is replaced with the following corrected figure. The purpose of the replacement is to align
the Information Field Type encodings with the bit encodings shown in the figures contained within Sections 3.4.1,
3.4.2, 3.4.3, 3.4.4, 3.4.5, and 3.4.6.

Bits
8 7 6 5 4 3 2 1 Octets

Type 1
(Note 1)

Length 2
(Note 2)

3 - NData

NOTES:
1. The following information field type encodings are used:

1 Bundle identification
2 Link identification
3 Magic number
4 Reserved
5 Timestamp information
6 Vendor extension
7 Cause

2. Length includes the Type, Length, and Data sub-fields.

Figure 17
MFR Link Integrity Protocol Information Field Format



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

FRF. 16 Errata Sheet

Frame Relay Forum Technical Committee
January 2000



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

ERRATA

Section 3.4

Figure 7 of Section 3.4 is replaced with the following corrected figure. The purpose of the replacement is to align
the Information Field Type encodings with the bit encodings shown in the figures contained within Sections 3.4.1,
3.4.2, 3.4.3, 3.4.4, 3.4.5, and 3.4.6.

Bits
8 7 6 5 4 3 2 1 Octets

Type 1
(Note 1)

Length 2
(Note 2)

3 - NData

NOTES:
1. The following information field type encodings are used:

1 Bundle identification
2 Link identification
3 Magic number
4 Reserved
5 Timestamp information
6 Vendor extension
7 Cause

2. Length includes the Type, Length, and Data sub-fields.

Figure 18
MFR Link Integrity Protocol Information Field Format



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

Section 4.3.2.5

In Section 4.3.2.5, a new reason is added for an ADD_LINK message to be invalid:

3. if the bundle link state is up.

Section 4.3.9

In Section 4.3.9, a new error reason is added to Table 4:

Error Description Cause Diagnostic Field Usage

UNEXPECTED_ADDLINK An ADD_LINK message was
received when the Bundle Link
was in up state.

8 None

Table 4
Cause Values

Annex A

When in the up state there is no longer any ADD_LINK message that is valid when received.  The contents of this
box in Table 5 should be replaced with a “-“ indicating an invalid combination.

Event up
ADD_LINK (Valid) -

Table 5
MFR Link Integrity Protocol State Transitions – Normal States – Part 1



Multilink Frame Relay UNI/NNI Implementation Agreement FRF.16

FRF. 16 Errata Sheet

Frame Relay Forum Technical Committee
April 2000



FRF.16 Multilink Frame Relay UNI/NNI Implementation Agreement

ERRATA
4.4  Section 4.3.2.2

The following changes should be made to section 4.3.2.2. The changes are shown in red and strikeout.

4.3.2.2 Receiving ADD_LINK_REJ Messages

A bundle link endpoint receiving an ADD_LINK_REJ message shall examine the cause information.  If the
cause code is UNKNOWN_VENDOR_EXTENSION, the bundle link endpoint shall not include the
rejected Vendor Extension Information Field in subsequent ADD_LINK messages.  All implementations
must be capable of operating without vendor extensions.

Upon reception of all ADD_LINK_REJ messages, the originator of the ADD_LINK message shall:

5. remain in the add sent or add rx state;

6. transmit the corrected ADD_LINK message. If the ADD_LINK message cannot be corrected then the
sending of the ADD_LINK should be delayed by the T_HELLO timer. Implementations of MFR that
don’t support vendor extensions can safely assume that the ADD_LINK_REJ message is not
correctable.

7. Stop timer T_ACK; start timer T_ACK T_HELLO; and

8. send a BL_DEACTIVATE indication to the bundle with the cause code and diagnostics, if diagnostics
are present in the message.  The bundle should issue a MB_ERROR indication to report the failure to
layer management.

Refer to Table 4 for a list of the cause values and the contents of the diagnostic field.

Note: An example of where the ADD_LINK message probably cannot be corrected is when the cause code
is INCONSISTENT_BUNDLE. An example of where the ADD_LINK message probably can be corrected is
when the cause is UNKNOWN_VENDOR_EXTENSION. In the latter case the corrected ADD_LINK
message will not have the Vendor Extension Information Field.

4.4.1.1 Changes to Table 5 in Annex A

The changes to Table 5 in Annex A are shown in red and strikeout.

Event Add sent ack rx add rx up idle pending idle
ADD_LINK_REJ BL_DEACTIVATE.cnf

send ADD_LINK
Start T_ACK
Stop T_ACK
Start T_HELLO
=> add sent

BL_DEACTIVATE.cnf
send ADD_LINK
Start T_ACK
Stop T_ACK
Start T_HELLO
=> add sent

BL_DEACTIVATE.cnf
send ADD_LINK
Start T_ACK
Stop T_ACK
Start T_HELLO
=> add rx

- => idle pending => idle


	Back

