
An Alternative Approach to RSVP-aware MBone Applications

**Yu-Ben Miao, **Chen-Yu Wang, **Ji-Feng Chiu, *Wen-Shyang Hwang, **Ce-Kuen Shieh
*Department of Electrical Engineering, National Kaohsiung University of Applied Sciences, Taiwan, R.O.C.

**Department of Electrical Engineering, National Cheng Kung University, Taiwan, R.O.C.
ybmiau@ybmiau.ee.ncku.edu.tw, aries@kungsrv.ee.ncku.edu.tw, gary@hpds.ee.ncku.edu.tw,

wshwang@mail.ee.kuas.edu.tw, shieh@eembox.ee.ncku.edu.tw

Abstract

QoS guarantee is one of the most critical issues for
deploying multicast-style applications. However, the
complexity of communication between applications and
QoS mechanism decreases the utility of QoS provisioning.
In this paper, we will propose an alternative approach to
RSVP-aware MBone applications. This approach adopts
RLR (RSVP Library Redirection), which can transform
legacy Internet applications into RSVP-aware without
modifying their source codes. We will extend the ability of
RLR to support UDP (User Datagram Protocol),
multicast-style MBone applications and use Vic as an
example to illustrate how to transform legacy applications
into RSVP-aware. We also deploy a user interface for
users to adjust their reservation requirement.

I. Introduction

Nowadays, real-time applications such as video
conferencing, interactive multimedia games and VOD
(Video On Demand), are becoming popular in the Internet.
Basically, these applications run on MBone (Multicast
Backbone), a network that consists of multicast-capable
routers, and are called MBone applications. Most of them
are UDP (User Datagram Protocol) -based, multicast-style
and QoS-sensitive applications. However, in a best-effort
network, there is no guarantee of the network QoS. The
packets of UDP-based applications may be dropped or
delayed when the network is congested. To solve this
problem, QoS-aware network and QoS-aware applications
are necessary. Many QoS mechanisms for network such as
IntServ (Integrated Service) or IntServ plus DiffServ
(Differentiated Service) have been developed extensively
in past few years. In order to couple QoS-aware
applications with QoS-aware networks, a signaling
protocol RSVP (Resource reSerVation Protocol) has been
proposed [1][2][7]. However, although the QoS-aware
network has been deploying well, the sophisticated
implementation of QoS-aware application becomes one of
the bottlenecks to utilize QoS-aware network for
QoS-sensitive applications.

In [3] we proposed a transparent method named
RLR (RSVP Library Redirection) to transform legacy
application to be RSVP-aware. RLR achieves the
transparent transformation by redirecting procedure calls
from the socket library to the RAPI (RSVP Application
Programming Interface) library without any modification

of source codes. However, the previous study focuses on
FTP applications, which are TCP-based, unicast-style. It
did not give the solution for UDP-based, multicast-style
applications. Furthermore, the parameters that describe the
traffic characteristic are preset in the program. These
parameters can’t be dynamically changed to adapt to
variable network situation and application requirements.
In addition, it is usually hard for users to specify these
parameters precisely. A convenient way for users to
choose the quality of service they desired is in demand.

This paper focuses on the RLR approach for
UDP-based, multicast-style applications. A typical MBone
application Vic [6] is chosen to be the target application.
Vic is a popular shareware on the Internet. It is an
UDP-based multicast-style and QoS-sensitive application
hence it is suit for verifying the feasibility of RLR. Also a
user-friendly interface is developed for user to arbitrarily
and dynamically adjusts the reservation requirement.
 The rest of this paper organizes as follows: Section 2
introduces the background of RLR, and how multicast
applications work. Section 3 gives a description of how to
design RSVP-aware multicast applications. Section 4
illustrates the implementation of RSVP-aware MBone
applications by using RLR. The experimental results are
shown in Section 5. Finally, Section 6 gives a conclusion
remark.

II. Background

RLR
RLR is used to transparently transform legacy

Internet applications into RSVP-aware by means of library
redirection. Fig 1 shows the control flow of RLR.

Application

RSVP daemon

Packet
Scheduler

RSVP API

Socket API

Packet
Classifier

Admission
Control

Data
Flow

Host

RSVP Signaling

Data Flow

RLR

Policy
Control

Data Flow

Fig. 1 The control flow of RLR

mailto:ybmiau@ybmiau.ee.ncku.edu.tw
mailto:aries@kungsrv.ee.ncku.edu.tw
mailto:gary@hpds.ee.ncku.edu.tw
mailto:wshwang@mail.ee.kuas.edu.tw
mailto:shieh@eembox.ee.ncku.edu.tw

First, the related invocations of socket routines from
applications are intercepted. Second, collecting the
parameters included in the intercepted routine calls if
necessary. Third, the originally invoked socket routines
continue to complete. Fourth, instead of returning directly
to applications after completion of the socket routines, the
control flow is redirected to call the RAPI to communicate
with RSVP daemon. Consequently RSVP daemon will
issue associated RSVP signaling messages. Fifth, after
finishing the signaling procedures, the control flow is
returned to the applications.

MBone applications
MBone has been the testbed for multimedia

applications such as audio conferencing tool, video
conferencing tool, and many others. Most of these
applications work on RTP (Real-time Transport Protocol)
[4]. RTP is the protocol that provides end-to-end delivery
services for temporally sensitive data. Its data transport is
augmented by a control protocol (RTP Control Protocol,
RTCP) that allows monitoring of the data delivery by
providing feedback on the quality of the data distribution.
Usually, both protocols are based on UDP. Although
RTP/RTCP supports certain QoS monitoring information,
RTP/RTCP itself does not provide any mechanism to
ensure timely delivery or provide other quality-of-service
guarantees [4]. It relies on the QoS provisioned by the
under layer network.

Fig. 2 shows the time line of a typical MBone
application that initiates a RTP session within two hosts
[5]. An RTP session begins with the contributing source
(sender) starting to send a media stream even though there
may be no receiver at that time. Some time later, the
receiver sends out an IGMP-join packet to join the session
and starts to receive the data of this media stream. Both
Sender and Receiver periodically send RTCP control
messages once they join the RTP session.

RTPSender starts
sending

RTCP

Receiver
Joins conference

RTP

RTCP
RTCP

RTCPRTP

RTCP

IGMP-join

Receiver sends
RTCP
periodically

Sender sends RTCP
periodically

Sender sends RTCP
periodically

Receiver sends
RTCP
periodically

Fig. 2 Time sequence when a session goes

III. Design of RSVP-aware MBone
applications

 Basically, RSVP-aware applications communicate
with RSVP daemon by invoking RAPI function calls to

issue related RSVP messages. Sender has to issue PATH
message with the parameter that describes the
characteristic of traffic it is going to generate. After
receiving sender’s PATH message, the receiver issues a
RESV message with parameter that specifies the resource
it requires. However, traditional applications do not deal
with the invocation of RAPI functions. Therefore, RLR
approach is in charge of invoking proper RAPI function
calls for legacy applications to communicate with RSVP
daemon. RLR has to identify which traffics need to be
protected and make adequate resource reservation.

As mentioned above, there are RTP and RTCP flows
in a RTP session that require adequate resource reservation.
Fig 3 shows the occasions that a RSVP-aware MBone
application sends RSVP messages to reserve resource for
RTP flow.

Sender starts
conference and

send RTP

Receiver
Joins conference

Receiver sends
RTCP periodically

Sender sends
RTCP periodically

Sender sends
RTCP periodically

Sender sends PATH

Quality of service
improves

Receiver makes
reservation of RTP

Sender sends
PATH periodically

Receiver sends
RESV periodically

RTP

RTCP

RTP

RTCP

RTCP

RTCP

RTP

RTCP

IGMP-join

PATH

RESV

RTP

PATH

RESV
RTP

PATHSender sends
PATH periodically

Fig. 3 Make reservation for RTP flow

First, sender begins to send out RSVP PATH
messages while it is initiating a RTP session to distribute a
media stream. According to the multicast routing tables,
the routers of MBone reproduce and forward these PATH
messages in the same manner as distributing the RTP
packets. Second, receiver issues IGMP-join to participate
in this RTP session. Third, routers start to forward the RTP
flow and PATH messages to that receiver. Forth, after
receiving the PATH message, receiver issues RSVP RESV
messages to make reservation for the RTP flow. Fifth, the
routers aggregate the RESV messages if necessary and
send these messages backward hop by hop to the sender to
accomplish the reservation.

The protocol behavior of RTCP is similar to RTP
except that both sender and receiver generate RTCP flows.
In this case, a bi-directional RSVP reservation is required.

IV. Implementation

RLRs for MBone Applications
 To transform Vic into RSVP-aware by using RLR
approach, it is critical to know their protocol behavior, i.e.
the sequence of socket functions invocation. The time of
when to invoke RAPI functions must be acknowledged.
Also the parameters that required by the RAPI function

call such as IP address and port number need to be
collected. The remote IP address and remote port number
are available before the application runs since these
parameters must be predefined in a multicast scenario.
However, most applications bind the local port
dynamically. The port number can be retrieved only at
runtime, which means some proper socket function calls
need to be intercepted to collect the information of local
port number. Fig 4 gives the flow of socket function calls
when Vic runs. There are two pairs of sockets that Vic
opens. Fig. 4(a) and (c) are the sockets that individually
send and receive RTP flow. Fig. 4(b) and (d) are the
sockets for RTCP flow. In Fig. 4(a), Vic calls socket() to
open a socket, named S_RTP_Send, for sending RTP
payload. Then it calls connect() to set remote IP address (a
class D group IP address in multicast scenario). Vic also
sets socket options to set loopback, TTL of RTP packets
and send buffer size. Finally Vic calls sendmsg() to send
out RTP packets.
 To receive RTP packets, Vic open a socket named
S_RTP_Receive, see Fig 4(c). It has to call setsockopt() to
set option SO_REUSEADDR and SO_REUSEPORT. It is
common routine for multicast programs to allow multiple
instances running simultaneously. Later, it calls bind() to
bind a local protocol address. To receive packets from the
specified group, Vic sets option IP_ADD_MEMBERSHIP
to join the group. After setting receive buffer size, Vic
calls recvfrom() to receive RTP packets.

Socket () Socket ()

Connect ()

Bind ()

recvfrom ()

Sendmsg ()

Setsockopt ()
IP_MULTICAST_LOOP

Socket ()

Connect ()

Sendto ()

(a) S_RTP_Send (b) S_RTCP_Send (c) S_RTP_Receive (d) S_RTCP_Receive

Setsockopt ()
IP_MULTICAST_LOOP

Setsockopt ()
IP_MULTICAST_TTL

Setsockopt ()
IP_MULTICAST_TTL

Setsockopt ()
SO_SNDBUF

Setsockopt ()
SO_SNDBUF

Setsockopt ()
SO_RESUEADDR

Setsockopt ()
SO_RESUEPORT

Setsockopt ()
IP_ADD_MEMBERSHIP

Setsockopt ()
SO_RCVBUF

Socket ()

Bind ()

recvfrom ()

Setsockopt ()
SO_RESUEADDR

Setsockopt ()
SO_RESUEPORT

Setsockopt ()
IP_ADD_MEMBERSHIP

Setsockopt ()
SO_RCVBUF

PATH

RESV

Socket () Socket ()

Connect ()

Bind ()

recvfrom ()

Sendmsg ()

Setsockopt ()
IP_MULTICAST_LOOP

Socket ()

Connect ()

Sendto ()

(a) S_RTP_Send (b) S_RTCP_Send (c) S_RTP_Receive (d) S_RTCP_Receive

Setsockopt ()
IP_MULTICAST_LOOP

Setsockopt ()
IP_MULTICAST_TTL

Setsockopt ()
IP_MULTICAST_TTL

Setsockopt ()
SO_SNDBUF

Setsockopt ()
SO_SNDBUF

Setsockopt ()
SO_RESUEADDR

Setsockopt ()
SO_RESUEPORT

Setsockopt ()
IP_ADD_MEMBERSHIP

Setsockopt ()
SO_RCVBUF

Socket ()

Bind ()

recvfrom ()

Setsockopt ()
SO_RESUEADDR

Setsockopt ()
SO_RESUEPORT

Setsockopt ()
IP_ADD_MEMBERSHIP

Setsockopt ()
SO_RCVBUF

PATH

RESVPATHPATH

RESVRESV

Fig. 4 Flow of socket function calls when Vic runs

In a RTP session of Vic, the host that plays the
contributing source role has to issue PATH message to
setup the RSVP path state for the RTP flow. Two steps are
needed to do that. First, the connect() or setsockopt() need
to be intercepted to retrieve the group IP address and port
number. Second, RLR issues RSVP PATH message while
sendmsg() is invoked. On the other hand, the host that
plays the recipient role has to issue RESV message to
make reservation for the RTP flow. In this case, bind() or
setsockopt() are the functions to be intercepted to retrieve
the group IP and port. RSVP RESV message is sent at the
time when recvfrom() is invoked. The similar routines are
applied to make reservation for RTCP flow, except that
PATH and RESV messages are sent while setsockopt() is
invoked.

RSVP parameters setting agent

 To support convenience for user to specify the
reservation specification, a GUI (Graphic User Interface)
is introduced in Fig 5. When the legacy application starts
with RLR, RLR will launch RSVP parameters setting
agent. There is a list maintained by the agent. The agent
starts with checking the user ID and consulting the list to
get the maximum of token rate, bucket size, and peak rate
that the user can specify. After that an interactive window
is popped up. User can adjust the reservation parameters
by scrolling the track bars. As the “Submit RSVP” button
is clicked, the agent sends these parameters through IPC
(Inter Process Communication) and signals RLR to
retrieve them out. Consequently, RLR invokes related
RAPI to issue this new reservation requirement. The
results of RAPI invocation will be translate and passed to
the agent through IPC. The status bar below the window
displays the results to indicate user whether the
reservation succeeds or not. When application is running,
the user can arbitrarily change the reservation
requirements to get a desired quality of service.

NAME MAX_R MAX_B MAX_P
root 1250 2500 2500
aries 1000 2000 2000
gingting 800 1500 1500
clock 600 1200 1200
drama 400 800 800

Kernel

RSVP
Daemon

RLR
AgentSignal

Application

IPC

To verify the feasibility of RLR approach for
multicast-style, QoS-sensitive applications, we set up two
experiments. The functionality of RSVP parameters
setting agent is also examined. Fig 6 gives the experiments
topology. There are seven PCs named CANCER, LEO,
ARIES, TAURUS, VIRGO, GEMINI and SCORPIO.
Their network interfaces are 10 Mbps Ethernet links and
FreeBSD is installed in these PCs.

Fig. 5 Design of RSVP Parameters setting Agent

V. Experiments and analysis

ARIES

TAURUS

GEMINI

10Mbps

VIRGO

CANCER

SCORPIO

LEO

vic / rat traffic

Background Traffic

Best-Effort

with RLR

with RLR

Fig. 6 Experiment topology

CANCER and LEO are used as PC-based routers to

connect 2 subnets. ARIES is the contributing source that

distributes media stream in the conference, while
TAURUS and VIRGO are conference receivers.
Background noise traffic is generated from GEMINI to
SCORPIO to simulate varied condition of the network
load. Fig 7 shows the link-sharing structure for these
experiments. Best-effort service is allocated with 60%
bandwidth and RSVP service is assigned with 40%
bandwidth.

10 Mbps

CANCERLEO

CBQ Root

60%
Best-Effort

40%
RSVP

Fig. 7 Link-sharing structure

Vic with RLR

 To verify the feasibility of RLR for Vic, a video
conference is opened in Vic and generates about 1.2Mbps
video traffic from ARIES to TAURUS and VIRGO.
Background noise traffic is increasing from 3Mbps to
6Mbps. The statistics of received packets and lost packets
on receivers are recorded. Fig 9 exhibits the Vic window
observed when Vic is running without RLR. The Vic
window of receiver is fragmented (see Fig 8 (b)). Fig. 9
shows that RLR has successfully made reservation for Vic.
Table 1 gives the statistics of packet received, packet loss
and loss rate.

(a) Vic on sender (b) Vic on receiver

Fig. 8 Vic with best-effort

(a) Vic on sender (b) Vic on receiver

Fig. 9 Vic with RLR

Dynamic setting of RSVP parameters

 The second experiment verifies the functionality of
RSVP parameters setting agent. We open a video
conference in Vic and change the resource reserved every
10 minutes using RSVP parameters setting agent when the
conference is running. Table 1 shows the statistical result.
The result indicates that the more bandwidth reserved, the

lower loss rate will be. This proves that the receiver can
arbitrarily change its bandwidth requirement by means of
the agent.

Table 1 Result of experiment 2

Background Traffic (4Mbps)
r: token rate (KB/s) 100 150 250
b: Bucket size (KB) 300 300 300

RSVP Parameters
Specified in Agent

p: Peak rate (KB/s) 350 350 350
Approximated BW reserved (Mbps) 0.8 1.2 2.0

RTP flow volume
(Kbits) 190828 345388 421547

Packet received 27753 48416 58563
Packet loss 2431 238 9

Receiver Report

Loss rate (%) 8.05 0.49 0.02

VI. Conclusion

In this paper, a RLR approach for UDP-based,
multicast-style applications is realized. A MBone
applications Vic is successfully transformed into
RSVP-aware by means of RLR method. In addition, a
RSVP parameters setting agent with a user-friendly
interface is developed. It provides a convenient way for
users to arbitrarily and dynamically assign their
reservation requirements.

In the future, we will port RLR module for
Microsoft Windows to verify the feasibility of RLR
method on these platforms. Meanwhile, we will apply
RLR method in the combination of IntServ and DiffServ
domains.

Reference

[1] David Durham and Raj Yavatkar, "Inside the Internet's
Resource reSerVation Protocol," 1999.

[2] Metz, C., "RSVP: general-purpose signaling for IP,"
IEEE Internet Computing, Volume: 33, Page(s): 95
-99, May-June 1999.

[3] C.K. Shieh, Y.B. Miao, J.Y. Wang, W.S. Hwang, J.F.
Chiu, “A Transparent Deployment Method of
RSVP-aware Applications on UNIX, accepted by
IEEE-ICON, 2001.

[4] H.Schulzrinne, S.Casner, R.Frederick, V.Jacobson,
“RTP: A Transport Protocol for Real-time
Applications”, RFC 1889, Internet Engineering Task
Force, 1996

[5] M.Handley, J.Crowcroft, C.Bormann, J.Ott, “Very
large conferences on the Internet: the Internet
multimedia conferencing architecture”, Computer
Metworks Vol.31, 1999, pp191-204

[6] V. Jacobson and S. McCanne, “Vic-Video
Conferencing tool”, available at URL: http://
www-nrg.ee.lbl.gov/Vic/

[7] Yoram Bernet,”The Complementary Roles of RSVP
and Differentiated Services,” IEEE Communications
Magazine, Volume:382, Feb. 2000, Page(s): 154-162.

http://www-nrg.ee.lbl.gov/vic/
http://www-nrg.ee.lbl.gov/vic/

