
A transparent deployment method of RSVP-aware
applications on UNIX

Yu-Ben Miao a,*, Wen-Shyang Hwang b, Ce-Kuen Shieh a

a Department of Electrical Engineering, National Cheng Kung University, Taiwan, Taiwan, ROC
b Department of Electrical Engineering, National Kaohsiung University of Applied Sciences, Taiwan, Taiwan, ROC

Abstract

This paper proposes a method, called RLR (RSVP (Resource reSerVation Protocol) library redirection), which can

transform legacy Internet applications into RSVP-aware applications without modifying their source files by redirecting

procedure calls from the socket library to the RAPI library. This method can be fulfilled for UNIX operating systems,

such as Linux and Free-BSD, etc., since these operating systems support the related mechanisms of procedure call

interception. In addition to the advantage of transparent transformation, RLR also allows a single RLR software

module to be used for multiple programs if they have similar protocol behavior.

In this study, the RLR method has been used to render several legacy network applications RSVP aware. These

applications include TCP-based and UDP-based programs, the two major Internet applications. The satisfactory use of

a single RLR module for multiple applications is also verified. The results show that RLR is a feasible approach for

deploying RSVP-aware applications.

� 2002 Published by Elsevier Science B.V.

Keywords: RLR; RSVP; RAPI; FTP; RTP

1. Introduction

The issue of quality of service (QoS) has been
discussed extensively in the past few years. Since
traditional best-effort service cannot meet the de-
livery requirements of time- and performance-crit-
ical applications, there has been an inevitable shift
towards integration of QoS into IP networks [18],
and most worldwide network equipment manufac-
turers, such as Cisco, Nortel and Cabletron, are

now building QoS-aware routers [14–16]. Further-
more, most popular operating systems, e.g., Mi-
crosoft Windows and UNIX, now support QoS
stacks in their kernels [3].

However, the shortage of QoS-aware applica-
tions has constrained a more widespread deploy-
ment of QoS networks, especially for IntServ
(Integrated Service), or IntServ-over-DiffServ (Dif-
ferentiated Service) networks [2–5]. In these net-
works, QoS-aware applications interact with QoS
mechanisms to request the service quality they re-
quire [1,13,19]. However, since most legacy internet
applications were developed before modern QoS
mechanisms were developed, this functionality is
missing in the majority of cases.

Computer Networks 40 (2002) 45–56

www.elsevier.com/locate/comnet

* Corresponding author.

E-mail addresses: ybmiau@hpds.ee.ncku.edu.tw (Y.-B.

Miao), wshwang@mail.ee.kuas.edu.tw (W.-S. Hwang), shieh@

eembox.ee.ncku.edu.tw (C.-K. Shieh).

1389-1286/02/$ - see front matter � 2002 Published by Elsevier Science B.V.

PII: S1389-1286 (02 )00264-5

mail to: ybmiau@hpds.ee.ncku.edu.tw


Several possible approaches exist for overcom-
ing this problem. One solution is to design QoS-
aware applications from scratch. However, this is
time consuming and requires a great deal of effort.
Alternatively, it is possible to modify the source
codes of the legacy applications to facilitate inter-
action with the QoS mechanism. Although this
approach is likely to require less effort than the first,
there are several drawbacks. Firstly, the source
code must be available; secondly, it is necessary to
modify each application individually, even if their
protocol behaviors are identical. Furthermore, both
approaches require application programmers to be
aware of, and to handle, the details of the QoS
mechanism. All these factors explain in part why
the growth of QoS-aware applications has fallen far
behind the deployment of QoS-capable devices.

This paper introduces a method, referred to
henceforth as RLR (RSVP (Resource reSerVation
Protocol) library redirection), which overcomes
the limitations presented above. This method pro-
vides a transparent upgrade of legacy applications
so that they become RSVP-aware, and requires
no modification of the application source code.
Furthermore, one single RLR module may be used
for all applications having similar protocol be-
havior. To demonstrate the feasibility of the pro-
posed RLR method, this paper considers several
file transfer protocol (FTP) applications and sev-
eral applications running real time protocol (RTP).
The former are TCP-based applications, while
the latter are UDP-based streaming applications.
These applications have persistent connections
during data transfer and hence require certain QoS
assurance. Besides, the FTP programs used in this
study have similar protocol behavior, but different
user interfaces. In this way it is possible to verify
the statement that ‘‘one module can be used for
multiple programs’’. Furthermore, FTP and RTP
applications both use dynamic port binding, i.e.,
the port number information required by the RSVP
mechanism is not determined until the programs
are running, and so if RLR is successful in trans-
forming FTP and RTP applications, then it is
likely that most other internet applications may
also be upgraded in a similar manner.

The remainder of this paper is organized as
follows: Section 2 introduces the background to

the RSVP signaling protocol and RAPI interfaces,
while Section 3 describes the details of the RLR
method. The implementation of RSVP-aware ap-
plications using the RLR method and the experi-
mental results are presented in Sections 4 and 5,
respectively. Finally, Section 6 provides some brief
concluding remarks.

2. Background

In IntServ architectures or IntServ-over-Diff-
Serv architectures, QoS-aware applications usually
employ a signaling protocol to notify the network
of their resource requirements. The signaling pro-
tocol most commonly adopted is RSVP, which is
basically a receiver-oriented protocol, and which
requires the sender to first issue RSVP PATH
messages with parameters describing the charac-
teristics of the traffic which it is going to gener-
ate. The receiver then responds by issuing RSVP
RESV messages, which include parameters speci-
fying the resource required [7,8].

In RSVP-enabled network architectures, each
RSVP host contains RSVP-aware applications, an
RSVP API, an RSVP Daemon, and a Traffic
Control which comprises packet scheduler and
packet classifier mechanisms. RSVP-aware appli-
cations are programs which send or receive data
flows and, unlike legacy applications, they interact
with an RSVP daemon in order to acquire the
necessary QoS provision from the network.

Each RSVP API is a set of procedures used by
the applications to interact with the RSVP dae-
mon. These procedures are generally arranged into
libraries, and are linked by the programs at run
time. A typical RSVP API is a RAPI library on a
UNIX platform [20]. The RAPI includes the fol-
lowing procedures:

rapi sessionðÞ, used to initialize a session.
rapi senderðÞ, used to notify the RSVP daemon

of the sender traffic characteristics.
rapi reserveðÞ, used to notify the RSVP daemon

of the reservation parameters.
rapi getfdðÞ and rapi dispatchðÞ, used together

to receive notification of events.
The RSVP daemon is responsible for handling

RSVP signaling. It must be able to deliver RSVP

46 Y.-B. Miao et al. / Computer Networks 40 (2002) 45–56



messages to the network, and to process all RSVP
messages received by the host. In addition, it must
interact with the Traffic Control.

Within the Traffic Control, it is the responsi-
bility of the packet classifier to identify packets
corresponding to a provisioned flow, and that of
the packet scheduler to ensure that packets gen-
erated by the source application are in profile with
the specified QoS.

In a typical scenario, after loading the RAPI
library module, an RSVP-aware application will
use RAPI to initialize a QoS session and to pro-
vide a callback routine. RAPI then provides the
sender’s traffic characterization parameters, or the
receiver’s QoS specifications to the RSVP daemon.
When network events relating to the initialized
QoS session occur, a callback routine is invoked
which notifies the application.

3. RLR

The RLR method consists of the following
steps. Firstly, the relevant invocations of the
socket routines from the applications are inter-
cepted and if necessary, the parameters included in
the intercepted routine calls are collected. The
originally invoked socket routines continue to
completion, but the control flow is redirected to
call the RAPI to communicate with the RSVP
daemon rather than returning directly to the ap-
plications. In response, the RSVP daemon issues
appropriate RSVP signaling messages. Once these
signaling procedures are completed, the control
flow is returned to the applications. Other than a
small time delay, the applications are unaware of
any change in operations. Fig. 1 illustrates the
RLR control flow.

Fig. 1. Control flow of RSVP library redirection.

Y.-B. Miao et al. / Computer Networks 40 (2002) 45–56 47



Consider the following example. If a client
wishes to request QoS from the network for a TCP
connection in order to send data to a remote ser-
ver, it is necessary to intercept the connect() rou-
tine invoked by the client. The IP address and port
number parameters, which are included in the
connect() routine, are collected since they are part
of the sender’s traffic characterization parameters.
The remaining parameters included in TSPEC,
such as average token rate, bucket size and peak
rate, can be set by the user via some kind of user
interface. Having collected these parameters, the
connect() routine then continues to completion.
However, before returning to the application pro-
gram, control is passed to the rapi_sender() rou-
tine, which notifies the RSVP daemon of the
sender parameters. The RSVP daemon then sends
a PATH message to the remote server.

The server must call the accept() routine to
wait for the connection requests. Under the RLR
method, when a connect request is present, control
will busy-wait for the PATH message through
which the flow specification can be established,
before returning to the application from the ac-
cept() routine. On receiving the PATH message,
control passes to the rapi_reserve() routine, which
will then hand the RSVP daemon the flow speci-
fication required for responding the RESV mes-
sage to the client.

The same approach can be applied to UDP-
based streaming applications. In this situation, a
sender transmits data packets through the UDP
socket by calling the interface sendto() or send-
msg() routines, whereas the receiver retrieves a
UDP packet by calling the recvfrom() routine. In
this case, the sendto () (or sendmsg()) and recv-
from () routines need to be intercepted in order to
collect the IP address and port number parame-
ters.

The feasibility of the RLR method depends on
whether or not the socket calls from the applica-
tion programs can be intercepted. Fortunately,
since most internet applications on current UNIX
operating systems use dynamic linkage of the
socket library, it is possible to prepare a RLR
library in which each routine has the same name
as that to be intercepted within the socket library.
By using the LD_PRELOAD environment vari-

able to replace the socket library, it is possible for
the RLR library to intercept the associated socket
calls [6]. The RLR library then collects the re-
quired parameters and continues the socket calls
by invoking the original socket library through the
dlopen() and dlsym() routines. Basically, dlopen()
loads the shared library and maps it into memory,
if it is not already loaded, while dlsym() retrieves
the address of the symbols that are inside the li-
brary [6,12].

4. Implementation of RSVP-aware applications

In this study, the RLR method was used to
render several legacy FTP applications RSVP-
aware, including ftp, gftp, etc. The method was
also applied to several applications running on
RTP, such as Vic and Rat, which are video/audio
conferencing programs having the ability to
broadcast or uni-cast video/audio streams between
multi-participants. Basically, ftp, gftp, etc., are
TCP-based, while Vic and Rat applications are
UDP-based.

4.1. FTP

FTP applications provide the function of file
transfer for Internet users. Most of these applica-
tions have identical protocol behavior since a sin-
gle FTP server needs to serve different FTP clients.
FTP applications, such as ftp, gftp, xftp, lftp, and
ftptool etc. use TCP connections and allow file
transfer in either direction. Typically, they adopt
the implementation of a concurrent server in which
the server program forks a child process to serve
each connection request (as shown in Fig. 2). Ini-
tially, the FTP client issues a connection request to
the FTP server, which responds by forking a new
child process to serve this request. As a result, a
control connection is established for each client–
server pair, which allows the client to transfer
commands to the server. Upon receipt of a client
command, the server issues a connection request to
the client in order to establish a data connection.
The server port numbers used for the data con-
nection and the control connection are 20 and 21,
respectively, while those on the client side are se-

48 Y.-B. Miao et al. / Computer Networks 40 (2002) 45–56



lected randomly (in general, they are greater than
1024).

Essentially, data and control connections for
FTP applications are bi-directional, i.e., the data
or commands go in one direction and the flow
control packets, e.g., ACK packets, travel in the
opposite direction. In order to obtain the best
possible system performance, it is necessary to
protect these bi-directional flows. However, since
the volume of traffic through the data connection
is not symmetrical, it is necessary to identify the
direction in which data will be transferred, and to
reserve a larger bandwidth for it if the network
resources are to be used effectively.

Since the direction of data transfer depends on
the commands that user inputs, it is necessary to
inspect the user’s commands sent in the control
connection. An implication of this is that the
send() and receive() routines must be intercepted,
in addition to the other required function calls.

4.2. RTP

RTP is a protocol which provides end-to-end
delivery services for temporally sensitive data. Its

data transport is augmented by a control protocol
(RTCP, RTP Control Protocol) which allows
monitoring of the data delivery by providing feed-
back on the quality of the data distribution. Usu-
ally, both protocols run on top of UDP and use
separate port numbers [17]. Vic and Rat are two
typical Internet applications using RTP/RTCP.

Although both RTP applications must send and
receive RTP and RTCP packets during execution,
they may use different methods to do this, e.g., Vic
uses sendmsg() to send the RTP packet, and
sendto() to send RTCP packets. (The typical sce-
nario is shown in Fig. 3.) By contrast, Rat trans-
fers both RTP and RTCP traffic using just the
sendto() routine.

In the implementation of RLR for Vic, the con-
nect() and recvfrom() routines are intercepted in
order to collect the IP addresses and port numbers
required for RSVP reservation. However, in the
case of the Rat application, the IP addresses and
port numbers are not determined until the invoking
of sendto() routine, and so it is necessary to inter-
cept the sendto() and recvfrom() functions instead.

Since applications running RTP/RTCP invoke
the UDP socket interface for their packet transfer,

Fig. 2. Concurrent FTP server.

Y.-B. Miao et al. / Computer Networks 40 (2002) 45–56 49



the RLR method can be applied to provide them
with RSVP protection. However, unlike the im-
plementation of RSVP-aware FTP applications, it
is sufficient to make bandwidth reservation in one
direction only since UDP is uni-directional.

5. Experimental results

Four experiments are conducted in order to
evaluate the feasibility of the RLR method. The
first experiment verifies the effectiveness of the
RLR method, while the second experiment mea-
sures its overhead. The aim of the third experiment
is to determine whether a single RLR module can
be used successfully for more than one FTP pro-
gram, and the final experiment considers the in-
fluence of reservation on TCP flow control.

Fig. 4 shows the experimental environment used
to conduct these experiments. It will be seen that
there are 4 hosts, and 2 Cisco 2621 routers, which
are RSVP enabled. The routers are configured so
as to form an IntServ domain. 10 Mbps ethernet
links are used throughout. Weighted fair queue
(WFQ) is implemented on routers and provides
traffic priority management that automatically
sorts among individual traffic streams. Each of
the hosts is equipped with a P-II 266 CPU having
64M of RAM. Hosts A and B are both Free-
BSD3.2 platforms. Host A is used as the FTP
server and the RTP sender, and Host B acts as the

FTP client and the RTP receiver. Both host ma-
chines are installed with class based queue (CBQ),
and the RSVP daemon. CBQ is a traffic controller,
which manages the resources of a link based upon
arbitrarily defined traffic classes [9]. In the experi-
ments, it carries out the functions of the Traffic
Control, and cooperates with the RSVP daemon
to ensure that the RSVP messages signal properly.

Hosts C and D emulate background traffic by
using Mgen to generate best-effort UDP packets.
Mgen also provides the statistical ability to mea-
sure the performance of an IP network [10]. The
traffic is logged by tele traffic tapper (TTT). TTT is
a graphical tool which provides real time traffic
monitoring [11].

5.1. Effectiveness of RLR method

5.1.1. RLR with TCP
To verify the effectiveness of RLR for TCP-

based applications, a 20 Mbyte file is retrieved
from the FTP server (Host A) by the FTP client;
firstly by an RSVP-unaware (legacy) application,
and then by an application rendered RSVP-aware
by the RLR method. While this retrieval process is
underway, background traffic is generated, and
transferred from Host C to Host D. The volume of
background traffic is varied, and the variation in
throughput between Host A and Host B is mea-
sured. In order to observe the effectiveness of RLR

Fig. 3. Socket APIs invoked in Vic.

50 Y.-B. Miao et al. / Computer Networks 40 (2002) 45–56



manifestly, the throughput of RSVP-aware FTP
applications is not measured until the successful
establishment of RSVP reservation. The WFQ on
routers allocate the RSVP traffic 40% of the
bandwidth, and the best-effort traffic, 60%.

Figs. 5 and 6 are traffic volume recorded by
TTT at an interval of 1 s when FTPs are trans-
mitting files. Fig. 5 shows the throughput under
the legacy FTP application, for different back-
ground traffic loads from 0 to 6 Mbps. It will be
seen that the throughput is indeed influenced by
the background traffic, and that the throughput is
almost zero in some cases. Fig. 6 shows the same
circumstances for an RSVP-aware, FTP-based ap-
plication. Since the throughput remains stable as
the volume of background traffic is increased, it is
clear that the RLR method has successfully es-
tablished an RSVP protected connection.

5.1.2. RLR with UDP
To verify the effectiveness of the RLR method

for UDP-based applications, a video stream is uni-
cast from the RTP sender (Host A) to the RTP
receiver (Host B); firstly by an RSVP-unaware

(legacy) RTP application, and then by an RTP
application rendered RSVP-aware by the RLR
method. Simultaneously, background traffic is
generated, and transferred from Host C to Host D.
The volume of background traffic is varied, and
the corresponding variation of QoS is measured
for both RTP applications. The WFQ on routers is
configured as before, i.e., 40% for RSVP traffic,
and 60% for best-effort traffic.

Table 1 shows the quality of service for Vic for
background traffic volumes of 3 and 6 Mbps. Fig.
7 shows the throughput of legacy and RSVP-
aware Vic, for different background traffic loads
from 0 to 6 Mbps. It can be seen that there is
significant packet loss under heavy network loads
for legacy Vic, but that when Vic is rendered
RSVP-aware, an RSVP reserved connection is suc-
cessfully established, which provides a better qual-
ity of service. A similar outcome is obtained for
the Rat application Fig. 8. A comparison of the
Table 1 and 2 shows that Rat suffers more severe
packet loss than Vic when both applications are
RSVP-unaware. This is to be expected since audio
data is more temporal-sensitive than video data.

Fig. 4. Experimental environment.

Y.-B. Miao et al. / Computer Networks 40 (2002) 45–56 51



5.2. Overhead of RLR

The interception and re-direction of appropri-
ate socket routine calls issued by an application

(e.g., connect(), accept(), close(), send(), re-
ceive(), sendto(), and recvfrom(), etc.), which is
the essential part of the RLR method, induces an
overhead. The interception of the first three socket

Fig. 6. Throughput of RSVP-aware (using RLR method) FTP.

Fig. 5. Throughput of RSVP-unaware (legacy) FTP.

52 Y.-B. Miao et al. / Computer Networks 40 (2002) 45–56



routines influences the time required to set up and
tear down a connection, while the remaining rou-
tines cause a processing overhead for data transfer.

In order to evaluate the overhead of RLR for
TCP-based applications, the performance of two
types of RSVP-aware FTP applications is mea-
sured. In one application the RAPI invocations
are coded directly within the source code (i.e., an
embedded approach), while in the other, the RLR
method is adopted. The same program is used for
the two FTP applications.

To compare the time for setting up and tearing
down a connection between the FTP client and the
server, the average time required to set up a con-
nection and then immediately tear it down is
measured for the two FTP applications. The re-
sults are presented in Table 3.

The average time required to set up, and to tear
down a connection using the RLR method is 1.7
times higher than when using the embedded ap-
proach. Hence RLR is not appropriate for non-
persistent connections such as WWW applications,
etc. Nonetheless, for FTP, this overhead can be
neglected since the connection activity occurs only
once during a FTP session.

To evaluate the overhead on the processing for
data transfer, the average time to transfer 15 K,
150 K, 1 M, and 1.5 M is measured in the same
environment as described above (in Section 5.1.1).
The results are shown in Table 4.

Similar results were observed for UDP-based
streaming applications. Basically, the overhead of
setting up an RSVP session occurs only once at the

Fig. 8. Throughput of Rat.

Fig. 7. Throughput of Vic.

Table 1

Statistical results of QoS on Vic

Application RSVP-unaware

(legacy) Vic

RSVP-aware (using

RLR method) Vic

Background

traffic (MB)

3 6 3 6

Packet re-

ceived

47512 45080 58081 56787

Packet loss 37 12327 540 604

Loss rate(%) 0.08 21.47 0.92 1.05

Y.-B. Miao et al. / Computer Networks 40 (2002) 45–56 53



first invocation of sendto() routine in these cases,
and the processing overhead is comparable to
those of the RSVP-aware FTP applications.

The experimental results demonstrate that the
RLR method induces less than 1% overhead in this
particular environment. However, the degree of
overhead depends on the processing power of the
hosts, and since the speed of commodity CPUs is
increasing very rapidly, this overhead will pro-
gressively diminish.

5.3. A single RLR module for multiple programs

To verify whether or not a single RLR module
can work successfully for multiple FTP applica-
tions, several versions of FTP applications are
tested separately using a single RLR module.
These applications include ftp, gftp, xftp, lftp, and
ftptool. Although these applications have different

user interfaces, they all link to their socket library
dynamically and have similar protocol behaviors.
Therefore, they are suitable for use in confirming
the achievability of ‘‘a single RLR module for
multiple programs’’. The environment setting is
the same as described in Section 5.1.1. Each ap-
plication runs on Host B and retrieves a 10M bytes
file from Host A. A same RLR module is used
throughout. Statistics relating to throughputs are
presented in Table 5.

The results show that RLR has successfully set
up an RSVP protected connection for these FTP
applications and confirm that a single RLR mod-
ule can transform several legacy FTP applications
into RSVP-aware applications.

5.4. The influence of reservation on TCP flow
control

It is well known that TCP is a connection-ori-
ented protocol, i.e., it relies on traffic feedback to
handle flow control and error recovery. Each end
host of a TCP connection returns an ACK packet
whenever it receives a data packet.

To evaluate the influence of reservation on TCP
flow control, two different RLR modules are de-
signed. One module provides uni-directional res-
ervation for non-symmetric TCP traffic such as
FTP, while the other provides bi-directional res-
ervation. The only difference between these two
types of reservation is that the ACK traffic in the
bi-directional reservation is protected, whereas
that in the uni-directional reservation is not.

In this experiment, background traffic is gen-
erated from Host D to Host C in order that it
competes with the ACK packets for bandwidth.

Table 3

Average time to set up and tear down a connection

Embedded approach elapsed

time (ms)

RLR approach elapsed

time (ms)

3.790 6.409

Table 4

Data transfer time for embedded and RLR approach

File size (bytes) Embedded approach

elapsed time (ms)

RLR approach

elapsed time (ms)

15K 1604 1620

150K 7161 7182

1M 41729 42001

1.5M 62527 62593

Table 2

Statistical results of QoS on Rat

Application RSVP-unaware

(legacy) Rat

RSVP-aware (using

RLR method) Rat

Background

traffic (MB)

3 6 3 6

Packet re-

ceived

114704 34427 114704 111175

Packet loss 0 69182 0 3

Loss rate(%) 0.00 66.77 0.00 0.00

Table 5

A single RLR module for multiple FTP applications

Appli-

cation

name

RSVP-unaware

application

throughput (Mbps)

RSVP-aware

application

throughput (Mbps)

ftp 1.05 3.77

gftp 0.98 3.57

xftp 0.92 3.42

lftp 1.02 3.63

ftptool 0.93 3.20

54 Y.-B. Miao et al. / Computer Networks 40 (2002) 45–56



The setting of reservation for data flow is the same
as Section 5.1, i.e., 40% for RSVP traffic, and 60%
for best-effort traffic. In the opposite direction,
60% bandwidth is allocated for the best-effort
traffic, and a 5% band width is reserved for the
ACK packets in the bi-directional reservation.

Observation of Table 6 shows that ACK
packets are delayed or dropped under heavy load
conditions. It should be noted that the failure to
return flow control packets has a significant in-
fluence on the throughput of data traffic.

6. Conclusions

This paper has proposed a RLR method, which
can transform legacy Internet applications into
RSVP-aware applications without modification of
their source files. Several TCP-based and UDP-
based applications have been successfully rendered
RSVP-aware using this method. The ability of a
single RLR module to transform multiple legacy
applications into RSVP-aware applications has
also been proven. Although the RLR method does
induce some overhead, the measured operating
costs still remain within a reasonable range. The
influence of reservation on TCP flow control has
also been investigated. The experiments have
shown the feasibility of using the RLR method on
UNIX platforms.

In the future, it is the current authors’ intention
to use the RLR method to render multicast ap-
plications RSVP-aware. Meanwhile, a RLR mod-
ule will be constructed for Microsoft Windows to
verify the feasibility of the RLR method on these
platforms.

References

[1] P.G.S. Florissi, Y. Yemini, D. Florissi, QoSockets: A new

extension to the sockets API for end-to-end application

QoS management, Computer Networks 35 (2001) 57–76.

[2] C. Metz, RSVP: General-purpose signaling for IP, IEEE

Internet Computing 33 (1999) 95–99.

[3] Y. Bernet, The complementary roles of RSVP and differ-

entiated services, IEEE Communications Magazine 382

(2000) 154–162.

[4] A. Detti, M. Listanti, L. Veltri, Supporting RSVP in a

differentiated service domain––an architectural framework

and a scalability analysis, in: IEEE International Confer-

ence on Communications, vol. 1, 1999, pp. 204–210.

[5] J. Schmitt, M. Karsten, L. Wolf, R. Steinmetz, Aggrega-

tion of guaranteed service flows, in: Seventh International

Workshop on Quality of Service, 1999, pp. 147–155.

[6] D.A. Curry, UNIX systems programming for SVR4, first

ed., 1996.

[7] L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala,

RSVP: A new resource ReSerVation protocol, IEEE

Network 7 (5) (1993) 8–18.

[8] D. Durham, R. Yavatkar, in: Inside the Internet’s Re-

source reSerVation Protocol, Wiley, New York, 1999, pp.

127–192.

[9] S. Floyd, M.F. Speer, Experimental results for class-based

queuing, http://www-nrg.ee.lbl.gov/floyd/cbq/notes.html

1998.

[10] Brian Adamson, The MGEN Toolset, http://mani-

mac.itd.nrl.navy.mil/MGEN, 1997.

[11] Kenjiro Cho, A public release of ALTQ for FreeBSD

http://www.csl.sony.co.jp/person/kjc/software.html, 2000.

[12] W. Richard Stevens, UNIX Network Programming 1,

second ed., 1998.

[13] P.Y. Wang, Y. Yemini, D. Florissi, J. Zinky, P. Florissi,

Experimental QoS performances of multimedia applica-

tions, INFOCOM, vol. 2, 2000, pp. 970–979.

[14] E. Basturk, A. Birman, G. Delp, R. Guerin, R. Haas, S.

Kamat, D. Kandlur, P. Pan, D. Pendarakis, V. Peris, R.

Rajan, D. Saha, D. Williams, Design and implementation

of a QoS capable switch-router, Computer Networks 31

(1999) 19–32.

[15] http://www.cisco.com.

[16] http://www.nortelnetworks.com/index.html.

[17] J. Rosenberg, Sampling of the group membership in RTP,

RFC 2762, 2000.

[18] D.T. McWherter, J. Sevy, W.C. Regli, Building an IP

network quality-of-service testbed, IEEE Internet Com-

puting 44 (2000) 65–73.

[19] S.N. Bhatti, G. Knight, Enabling QoS adaptation decisions

for internet applications, Computer Networks 31 (1999)

669–692.

[20] R. Braden, D. Hoffman, RAPI-an RSVP application

programming interface version 5, Internet Draft, August

11, 1998.

Table 6

Influence of reservation on TCP flow control

Back-

ground

traffic

(Mbps)

TCP throughput

with bi-directional

reservation (Mbps)

TCP throughput

with uni-directional

reservation (Mbps)

2 3.55 3.56

4 3.57 3.55

6 3.52 3.23

Y.-B. Miao et al. / Computer Networks 40 (2002) 45–56 55

http://www-nrg.ee.lbl.gov/floyd/cbq/notes.html
http://manimac.itd.nrl.navy.mil/MGEN
http://manimac.itd.nrl.navy.mil/MGEN
http://www.cisco.com
http://www.nortelnetworks.com/index.html


Yu-Ben Miao is currently a Ph.D.
candidate studying at Department of
Electrical Engineering, National
Cheng Kung University, Tainan, Tai-
wan. Miao received his BS degree from
National Chao Tung University in
1995 and MS degree from National
Cheng Kung University in 1997. His
current research interests include QoS,
RSVP, wireless network and WWW
database applications.

Wen-Shyang Hwang received the B.S.,
M.S., and Ph.D. degrees in Electrical
Engineering from National Cheng-
Kung University, Taiwan, in 1984,
1990 and 1996, respectively. He is an
associate professor of Electrical Engi-
neering, National Kaohsiung Univer-
sity of Applied Sciences, Taiwan. His
current research interests include multi-
channel WDM networks, performance
evaluation, QoS, RSVP, WWW data-
base applications.

Ce-Kuen Shieh is currently a professor
teaching at the Department of Elec-
trical Engineering, National Cheng
Kung University. He received his
Ph.D., MS, and BS degrees from
Electrical Engineering Department of
National Cheng Kung University,
Tainan, Taiwan. His current research
interests include distributed and par-
allel processing systems, computer
networking, and operating systems.

56 Y.-B. Miao et al. / Computer Networks 40 (2002) 45–56


	A transparent deployment method of RSVP-aware applications on UNIX
	Introduction
	Background
	RLR
	Implementation of RSVP-aware applications
	FTP
	RTP

	Experimental results
	Effectiveness of RLR method
	RLR with TCP
	RLR with UDP

	Overhead of RLR
	A single RLR module for multiple programs
	The influence of reservation on TCP flow control

	Conclusions
	References


