Proéeedings

_Ninth IEEE International
Conference on Networks

October 10 — 12, 2001
Bangkok, Thailand

Sponsored by
IEEE Singapore Chapter
IEEE Thailand Chapter
Mahanakorn University of Technology

D

COMPUTER
SOCIETY

I.os Alamitos, California
Washington - Brussels o Tokyo

13. ATM Networks

A Simple Method for Implementing PIM to ATM Based MPLS Networks
J. Cho and M. Chung ~

Feedback Consolidation Algorithm for ABR Point-to-Multipoint Connections in ATM Networks

M. El-Derini, A. El-Abd, and W. Fouad

A Two-Phase Approach for Vn-tnd ‘Topology Reconfiguration of Wavelength-Routed
WDM Optical Networks

362

366

371

N. Sreenath, G. Panesar, and C. Murthy

Third Order Inter-Modulation Distortion Simulation for a Semiconductor Laser in the
Fiber Optic Micro-Cellular System _

M. Suaidi, L. Yong, and S. Jabar

Destination and Channel Snooping Multiple Access (DCSMA) for Multi-Channel
Optical Local Area Networks

317

382

S. Piboonvath, M. Hall, and A. Roeksabutr
14, Mobile and Wireless Networks

Applying Spread Spectrum Technique for Transmitting Extra Bits over AWGN Channel
T. Amornraksa and P. Sweeney

An Efficient Connection Scheme for Mobile IP

390

396

H. Kim and C. Hwang

Internet Multicast Provisioning Issues for Hierarchical Architecture

K. Kim, J. Ha, E. Hyun, and S. Kim

New Approach for Mobile Multicast Based on SSM

401

K. Kim, J. Ha, E. Hyun, and S. Kim

Personal Communications in Integrated Personal Mobility Architecture

B. Thai, R. Wan, and A. Seneviratne
15. Qualhity of Service

A Probabilistic Scheme for Hierarchical QoS Routing

D. Ghosh and R. Acharya

Using Network Flows in Hierarchical QoS RoutmgL

V. Sarangan and R. Acharya

A Restoration Mechanism Using K-Shortest Control Paths

D. Kwak, J. Kim, and H. Park

A QoS Control Protocol for Rate-adaptive Video Traffic

X. Yu, D. Hoang, and D. Feng

A Transparent Deployment Method of RSVP-aware Applications on UNIX

C. Shieh, ¥. Miao, C. Wang, W. Hwang, and J. Chiu

416

422

428

434

439

A Transparent Deployment Method of RSVP-aware Applications on UNIX

Ce-Kuen Shieh
Department of Electrical
Engineering, National Cheng
Kung University, Taiwan

Yu-Ben Miao
Department of Electrical
Engineering, National Cheng
Kung University, Taiwan

Chen-Yu Wang
Department of Electrical
Engineering, National Cheng
- Kung University, Taiwan

RO.C. ROC. RO.C.
shieh@eembox.ee. ncku.edu.tw ybmiau@hpds.ee.ncku.edu.tw
Wen-Shyang Hwang Ji-Feng Chiu

Department of Electrical Engineering, National
Kaohsiung University of Applied Sciences,
Taiwan R.O.C.

Abstract

This paper proposed a method, called RLR (RSVP
Library Redirection), which can transform legacy Internet
applications into RSVP-aware applications without
modifying their source files. RLR achieves the transparent
transformation by redirecting procedure calls from the
socket library to the RAP! library. For UNIX operating
systems, such as Linux and Free-BSD etc., the redirection
can be realized since the related mechanisms of
procedure call interception are supported in these
operating systems. In addition to the advantage of
transparent transformation, RLR can allow single RLR
software module to be used for multiple programs if they
have similar behavior.

We have transformed several FTP applications to be
RSVP-aware by using one RLR module. The experimental
results show the feasibility of RLR.

1. Introduction

Quality of Service (QoS) has being intensively
discussed in past few years. Traditional best-effort service
cannot meet the delivery needs of time- and
performance-critical applications. Hence, integrating QoS
into IP networks seems inevitable [1). Currently, most
worldwide network manufactures, such as Cisco, Nortel
and Cabletron, are fabricating QoS-aware routers [15][16].
Furthermore, most popular operating systems, like
Microsoft windows and UNIX, have supported QoS
stacks in their kernels [3].

But, the shortage of QoS-aware: applications prevents
the further deployment of QoS networks, especially for
Integrated Service (IS) or Integrated Service plus

1531-2216/01 $10.00 © 2001 IEEE 439

Department of Electrical Engineering, National
Kaohsiung University of Applied Sciences,
Taiwan R.O.C.

Differentiated Service (DS) networks [2]{3]{4)[5]). In
these networks, QoS-aware applications must interactive
with QoS mechanisms in order to request proper service
quality from the network [2][3]. However, most legacy
Internet applications were developed before modern QoS
mechanisms being proposed. They are unaware of any
QoS mechanisms. :

Several possible approaches can be used to solve this
problem. One is to redesign QoS aware applications from
scratch. However, this approach is time consuming and
costs a lot of effort. Alternatively, we can modify the
source of legacy applications to add codes that directly
interact with underlying QoS mechanisms. Although, this
may save some effort compared with above approach, the
source codes must be available. Moreover, each of
applications needs to be modified separately, even if their
behaviors are identical. Consequently, the growth of
QoS-aware applications falls far behind the deployment
of QoS-capable devices.

This paper proposed a method, named RLR (RSVP,
Resource reSerVation Protocol, Library Redirection), to
overcome this problem. This method can transparently
upgrade legacy applications to be RSVP-aware without
any modification of source code. Furthermore, for the
applications with the similar behavior, one RLR module
can be used for all of them. In this paper, FTP (File
Transfer Protocol) applications are used to show the
feasibility of the RLR method. We choose FTP
applications since there are several different FTP
programs in our test bed. These programs have the similar
behavior but different user interfaces. So, they can be
used to verify the functionality of “one module can be
used for multiple programs”. On the other hand, FTP
applications use dynamic port binding. If RLR succeeds
in this challenge then most of other Internet applications
can be applied in a similar manner.

The rest of this paper organizes as follows: Section 2
introduces the background about the RSVP signaling
protocol and RAPI interfaces. ' The RLR method is
described in Section 3. Section 4 illustrates the
implementation of RSVP-aware FTP applications by
using RLR. The experimental results are shown in Section
5. Finally, Section 6 gives a conclusion remark.

2. Background

In IS or IS+DS network architectures, a signaling
protocol is usually required by QuS-aware applications to
notify the network their requirements of resources. The
most common signaling protocol adopted by these QoS
architectures is RSVP. Basically, RSVP is a
receiver-initiated protocol. The sending node is just to
pass the requirements of the traffic to the receiver via
sending a PATH message. The receiving node is
responsible for initiating the resource reservation by
sending back a RESV message.

In RSVP-enabled network architectures, each RSVP
host will contain RSVP-aware applications, an RSVP API,
a RSVP Daemon, and a RSVP protocol stack that consists
of admission control, packet scheduler and packet
classifier. RSVP-aware applications are programs -that
send or receive data flows. Unlike legacy applications,
they must interact with RSVP .daemon to require the QoS
support from network.

Each of RSVP APIs is a set of procedures used by
applications to interact with RSVP dacmon. In general,
they are created into libraries and linked by programs at
run time. Typical RSVP API is RAPI library on UNIX
platforms [14]. The RAPI procedures consist of
rapi_session(), that is used to initialize a session,
rapi_sender(), to notify RSVP daemon of the sender
traffic characteristics, rapi reserve(), to notify RSVP
daemon of the reservation parameters, and rapi_getfd() as
well as rapi_dispatch(), those are together used to receive
notification of events.

The RSVP daemon is responsible for handling the
RSVP signaling. It must be able to deliver RSVP
messages to the network and all RSVP messages received
by this host. must be passed to it. Besides, the RSVP
daemon has to interact with the RSVP protocol stack.

In the RSVP protocol stack, admission control is
responsible for keeping track of resource consumption on
a particular interface and making sure sufficient resources
are available to support a new resource request. Packet
classifier is respomsible for identifying packets
corresponding to a provisioned flow. The packet
scheduler is responsible for ensuring that packets
generated by the source application are in-profile with the
specified QoS. :

In a typical scenario, after loading the RAPI library
module, an RSVP-aware application will use RAPI to
initialize a QoS session. and provide a callback routine. It

440

then provides sender’s traffic characterization parameters
or receiver’s QoS specification to the RSVP daemon
through RAPI. When network events occur with respect
to the initialized QoS session, a callback routine will be
invoked to notify the application.

3.RLR

RLR method consists of the following steps. First, the
related invocations of socket routines from applications
are intercepted. Second, collecting the parameters
included in the intercepted routine calls if necessary.
Third, the originally invoked socket routines continue to
complete. Fourth, instead of returning directly to
applications after completion of the socket routines, the
control flow is redirected to call the RAPI to
communicate with RSVP daemon, which will issue
associated RSVP signaling messages. Fifth, after finishing
the signaling procedures, the control flow is returned to
the applications. In this case, the applications do not sense
any change of operations except a little time delay. Figure
1 shows the control flow of RLR.

Packet Packet
Classifier Scheduler

Traffic Controlier

Fig 1 The Control Flow of RSVP Library Redirection

For example, if a client wants to request the QoS from
the network for a TCP. connection in order to send data to
a remote server, the connect() routine invoked by the
client need to be intercepted. The parameters of IP
address and port number included in the conmnect() are
collected since they are part of the sender’s traffic
characterization parameters, TSPEC (the rest of the
parameters of the TSPEC, e.g. average token rate, bucket
size etc, can be set by the user through some kinds of user
interface). The commect() routine continues to complete.
Before returning to the application program from connect()
routine, control passes to rapi_sender() which will notify
the RSVP daemon of the sender parameters. Finally, the
RSVP daemon will send a PATH message to the remote
server. .

On the server side, a server must call accept() to wait
the next connection request. In the RLR method, when a

connect request is present, before returning to the
application from accept(), control will busy-wait for the
PATH message through which the flow specification can
be setup. On receiving the PATH message, control passes
to the rapi_reserve() routine which will hand the RSVP
daemon the flow specification for sending back the RESV
message.

The feasibility of RLR method depends on whether the
socket calls- from applications can- be intercepted.
Fortunately, since most Internet applications on current
UNIX operating systems use dynamic linkage of socket
library, we can prepare a RLR library, in which each
routine has the same name as that to be intercepted in the
socket library, to replace the socket library by using
LD PRELOAD environment variable [6]. In this case,
associated socket calls' will be intercepted by the RLR
library. The RLR library then collects the required
parameters and continues the socket calls by calling the
original socket library through dlopen() and disym().
Basically, dlopen() loads the shared library and maps it
into memory if it is not already loaded and disym()
retrieves the address of the symbols that are inside the
library[6]{12].

4. Implementation of RSVP-aware FTP
applications

In this section, we will describe the implementation of
RSVP-aware FTP applications by using RLR method.
Most FTP applications use TCP connections and allow
file transfer in either direction. Typically, they adopt the
implementation of concurrent server in which the server
program forks a child process to serve each connection
request (as shown in Figure 2). For each pair of client and
server, one control connection is created for the client to
transfer commands to the server. On receipt of a
command, the server will issue a connect request to the
client to establish a connection for data transfer. The port
numbers for control connection and data connection on
the server side are 21 and 20, respectively, while those on
the client side are randomly selected (in general, they are
great than1024).

FTP Server TP Client

Fig. 2: Concurrent FTP Server Model

441

Since data and control connections for FTP
applications are created through the invocations of socket
interface. RLR method can be used to provide the RSVP
protection for each of them. Basically, either data or
control connections are bi-directional; the data or
commands go in one direction and ACK packets travel in
the opposite direction, it is necessary to make
bi-directional protections for them in order to obtain
better performance. However, the traffic volume of the
data connection is not symmetric; the traffic in the
direction for sending data is larger than that for sending
ACK packets. That means we have to identify which
direction. is for data transfer and reserve a larger
bandwidth for it.

In FTP applications, the direction of file transfer
depends on the command a user inputs from a client node.
In our implementation of RSVP-aware FTP applications,
we identify the direction of file transfer by examining the
user’s commands transferred in the control connection. In
this case, the send() and receive() need to be intercepted
for tracking user commands.

5. Experimental Results

To estimate the feasibility of RLR method, we carry
out 3 experiments. First experiment is to verify the
effectiveness of RLR method. The overhead of RLR
method is measured in the second experiment. Last one is
to check whether a single RLR module can work for
multiple FTP programs,

Figure 3 shows the testing environment for our
experiment, in which there are 4 hosts and 2 routers.
Router 1 and 2 are Cisco 2600 routers, which are RSVP
enabled. Their interfaces are 10 Mbps Ethernet links.

Host A and B are FreeBSD3.2 platforms, the former is
used as the FTP server and the later is the FTP client.
Both of them are installed with CBQ (Class Based Queue)
and RSVP daemon. CBQ is a traffic controiler that can
manage resources on a link based on arbitrarily defined
traffic classes. It can be configured to communicate with
RSVP daemon.

Host C and D emulate different background traffic by
using Mgen to generate best-effort UDP packets. Mgen
provides the statistics ability to measure the performance
of IP network [10]. We use TTT (Tele Traffic Tapper) as a
traffic monitor, which is a graphical tool that can provide
real time traffic monitoring [11].

Fig. 3 Experimental Environment

5.1 Effectiveness of RLR method

To verify the effectiveness of RLR, we let
RSVP-unaware (legacy) and RSVP-aware (using RLR
method) FTP applications separately retrieve a 20 Mbytes
file from the FTP server (host A) to the FTP client (host
B). At the same time, the background traffic is generated
and transferred from host C to host D. Then we vary the
background traffic and measure the variance of
throughput for either FTP applications. The CBQ.on host
A and B are configured as 2 classes: 80% for. RSVP
traffic and 20% for best-effort traffic.

’Wﬂ.wmw“mwmh“m

SIS T A = pem oy

Fig. § FTP with RLR

Figure 4 shows that the traffic of the legacy FTP is
indeed influenced by the background traffic. The

442

throughput can even down to near zero. In figure 5, we
can see RLR method has successfully set up a RSVP
protected connection for RSVP-aware FTP. The
throughput is stable while changing the amount of .
background traffic.

5.2 Overhead of RLR

In the RLR method, the related socket routine calls
(e.g. connect(), accept(), close(), send(), receive(),etc.)
issued by an application have to be intercepted for
redirection. This will somewhat induce overhead. The
interception of the former three socket routines will
influence the time to setup and tear down a connection,
while that of the latter two routines will cause the
overhead on the processing for data transfer.

To evaluate these overheads of RLR, we measure the
performance for two kinds of RSVP-aware FTP
applications; one is directly coded with RAPI invocations
in the source codes (embedded approach), the other is to
use RLR method. We use the same program for these two
FTP applications.

We measure the average time to setup and tear down a
connection between two directly connected FTP client
and server for these two kinds of FTP programs. The
results are shown in Table. 1.

Table 1 Average Time to Setup and Tear down a

Connection (msec)
Embedded RLR
approach approach
3.790 6.409

Although RLR approach spends a 1.7 times average
time to setup and tear down a connection compared with
the embedded approach, the overhead can be neglected
since the connection activity only happens once during a
FTP session,

To evaluate the overhead on the processing for data
transfer, we measure the average time to transfer 64K
Bytes on the same environment as the above. The results
are shown in Table.2.

Table 2 Data Transfer Time (msec)

Data Size Embedded RLR
approach approach
64K Bytes 421.298 434,342

Our experiment shows that RLR method will induce
around 3% overhead in this case. However, this overhead
depends on the processing power of hosts. In fact, the
speed of commodity CPUs increases very rapidly, this
overhead will getting smaller.

5.3 One RLR module for multiple programs

To verify whether a single RLR module can work for
multiple FTP applications, we have separately tested
several versions of FTP applications by using a single
RLR module. These applications include fip, gfip, xfip,
Ifip, and fiptool. All of these FTP applications link socket
library dynamically and have similar behavior but with
different user interfaces. The result shows that one RLR
module can successfully transform these legacy FTP
applications into RSVP-aware applications.

6. Conclusion

This paper proposed a RLR method that can transform
legacy Internet applications: iato RSVP-aware
applications without modification of their source files. We
have successfully transformed several FTP applications to
be RSVP-aware by using a single RLR module. The
experiments have shown the feasibility of RLR method on
the UNIX platforms. ,

In the future, we are going to transform the UDP-based
applications with or without the multicasting function to
be RSVP-aware by using the RLR method. Meanwhile,
we will construct a RLR module for MS Windows to
verify the feasibility of RLR method on these platforms.

Reference . v

[1} McWherter, D. T.; Sevy, J.; Regli, W.C. "Building an [P
network quality-of-service testbed,” IEEE Internét Computing,
Volume:44, July-Aug. 2000, age(s): 65-73

[2] Metz, C., "RSVP: general-purpose signaling for IP", JEEE
Internet Computing, Volume: 33, Page(s): 95 -99, May-June
1999.

443

[3]1 Yoram Bemet,"The Complementary Roles of RSVP and
Differentiated Services”, IEEE Communications Magazine,
Volume:382, Feb. 2000, Page(s): 154-162

[4] Detti, A.; Listanti, M.; Veltri, L.,”Supporting RSVP in a
Differentiated Service Domain- An Architectural Framework
and a Scalability Analysis”, IEEE International Conference on
Communications 1999, Page(s): 204-210 vol. 1.

[5] Schmitt, J.; Karsten, M. Wolf, L; Steinmetz,
R.,”’Aggregation of Guaranteed Service Flows”, Seventh
International Workshop on Quality of Service 1999, Page(s):
147-155

[6) David A. Curry, “UNLX Systems Programming for SVR4”,
1st Edition July 1996.

[7] Zhang, L.; Deering, S.; Estrin, D.; Shenker, S.; Zappala, D.,
"RSVP: a new resource ReSerVation Protocol", IEEE Network
Volume: 7 5, Page(s): 8 -18, Sept. 1993.

[8] David Durham and Raj Yavatkar, "Inside the Internet's
Resource reSerVation Protocol", 1999.

[9] Sally Floyd and Michael Francis Speer, "Experimental
Results for Class-based Queuing",

http://www-nig e¢.Ibl.gov/floyd/cbq/potes. html, Jan. 1998.

[10] Brian Adamson, "The MGEN Toolset",
hitp://manimac.itd.nrl.navy. miYMGEN, July 1997.

[11] Kenjiro Cho, "A public release of ALTQ for FreeBSD",
http://www.csl.sony.co.jp/person/kjc/software.html, 2000.

[12] W. Richard Stevens, “UNLX Network Programming” Vol. 1,
2 Edition, 1998

[13] Wang, P.Y.; Yemini, Y.; Florissi, D.; Zinky, J.; Florissi, P.,
"Experimental QoS performances of multimedia applications",
INFOCOM 2000, Volume: 2, 2000, Page(s): 970 - 979 vol.2.
[14] R. Braden and D. Hoffman, "RAPI-An RSVP Application
Programming Interface version 5", Internet Draft, August 11,
1998.

[15) hutp://www.cisco.com

[16] http://www.norteinetworks.com/index.html

