
Adaptive Packet Pre-marker for TCP-based Applications
 in DiffServ Networks

Chih-Heng Ke, Ce-Kuen Shieh, *Yao-Ting Chen,*Wen-Shyang Hwang

Department of Electrical Engineering,
National Cheng Kung University, Taiwan R.O.C.

*Department of Electrical Engineering,
National Kaohsiung University of Applied Sciences, Taiwan R.O.C

smallko@hpds.ee.ncku.edu.tw, shieh@ee.ncku.edu.tw
timoth@wshlab2.ee.kuas.edu.tw, wshwang@mail.ee.kuas.edu.tw

Abstract

This paper proposes a control mechanism named

PPE (Packet Pre-marking Engine) in application layer
to assist TCP-based connection flow in maintaining
end-to-end throughput in DiffServ networks. The
application with PPE built in can adaptively adjust
the DSCP (DiffServ CodePoint) of user’s traffic
according to the network traffic load to inform the
service provider what kind of service is needed.
When the network is light-loaded, the user’s
requirement can be met and the best service is
provided. As the traffic load becomes heavy, the
requirement will fail to meet, and the better level of
service is used instead. In this paper, we will
implement an FTP client program with PPE in a
testing DiffServ platform to illustrate the
effectiveness of this control mechanism.

Keywords: DiffServ, TCP, PPE, application

I. Introduction

The Internet has historically offered a
best-effort delivery service, where all user packets are
equally treated in the network. Under this kind of
service model, it is insufficient to meet the
requirement of emerging real-time multimedia
applications, and difficult to provide a
better-than-best-effort service when customers are
willing to pay more. Therefore, two different service
models have been defined for network QoS by IETF
[1] (Internet Engineering Task Force): Integrated
Services (IS) [2] and Differentiated Services (DS) [3].
IS is an architecture that provides service

discrimination by explicit allocation and scheduling
of resources in the network. However, the complexity
and scalability problems of IS has led DS to draw
much attention to address quality of service. DS is
based on a simple model where traffic entering a
network is classified and possibly conditioned at the
boundaries of the network, and assigned to different
behavior aggregates that are a collection of packets
with common characteristics. Each behavior
aggregate is identified by a single DSCP
(Differentiated Service CodePoint). Within the core
of the network, packets are forwarded according to
the Per-Hop Behavior (PHB) associated with the
DSCP. Per-flow state does not need to be maintained
in the core routers, which leads to increased
scalability.

Transmission Control Protocol (TCP) is the
most widely used transport layer protocol in the
Internet. Most popular applications, such as Web and
file transfer use the reliable services provided by TCP.
Although the well-developed congestion and flow
control mechanism of TCP helps these applications
work well in the traditional best-effort service based
Internet, customers’ need and service providers’
expect would not be satisfied. Service providers
would expect to maximize their return on investment
in network infrastructure through offering different
better-than-best-effort services and charging more
money. In the other hand, customers would want to
pay more to meet their requirement. Therefore,
several traffic management and packet marking
mechanisms [4-8] have been proposed for improving
TCP performance with minimum rate guarantee in a
differentiated service network. However, these
researches put more efforts on network than on
applications. We argue that applications themselves
are also important and need to be evolved. The

consideration of customer’s preference is an
indispensable necessity for supporting QoS within
the end-system, as only the customer is able to decide
which application is important for him/her and should
be preferred. This paper assumes network provides
two different levels of service according to the Type
of Service (TOS) bits of user’s traffic, and the
usage-based pricing strategy is used to discourage
users from continually requesting the higher level of
service. We propose a control mechanism, which
we call a packet pre-marking engine (PPE), in
application layer to help the individual connection
flow maintain end-to-end throughput while keeping
the service expenditure as low as possible. PPE
measures the return speed of acknowledgement
packet of TCP that approximately represents network
status and then adaptively adjusts ToS bits when
sending out customer’s traffic. If the network is
light-loaded and measured transfer rate is above the
requested rate, the best-effort packets are generated.
When traffic load becomes heavy and the measured
rate falls below the minimum target rate, the ToS bits
are set to inform service provider the higher service is
needed.

The rest of the paper is organized as follows:
Section II gives an overview of the data path from
application level to kernel space. Section III presents
the function of packet pre-marking engine and
Section IV validates the PPE by using FTP with an
adaptive packet pre-marking mechanism. We
conclude in section V.

II. Background

The Internet has two main protocols in the

transport layer, TCP and UDP. TCP provides a
reliable service and UDP provides an unreliable
service. Because there is a distinct discrepancy in the
socket send buffer. We can see clearly from Figure 1
and Figure 2. Every TCP socket has a send buffer, but
UDP doesn’t. In TCP, when an application calls the
function write(), the kernel copies all the data from
the application buffer into the socket send buffer. If
there is insufficient room in the socket buffer for all
of the application’s data (either the application buffer
is larger than the socket send buffer, or there is
already data in the socket send buffer), the process is
put to sleep. The kernel will return from the function
write() until the final byte in the application buffer
has been copied into the socket send buffer. Then
TCP takes the data in the socket send buffer and
sends it to the peer TCP, based on all the rules of TCP
data transmission. The peer TCP must acknowledge

the data from the socket send buffer. TCP must keep
a copy of the data until the peer acknowledges it. On
the contrary, UDP does not have a send buffer. When
the application data is copied into a kernel buffer as it
passes down the protocol stack, this copy is discarded
by the data-link layer after the data is transmitted [9].

III. Packet Pre-marking Engine (PPE)

A packet pre-marking engine (PPE) is mainly
made up of two parts. One is the transfer rate monitor
and the other part is the packet pre-marking
decision-maker. The transfer rate monitor snoops on
the application’s data copying from user space to
kernel space and measures its observed transfer rate.
In the following, the copying rate and transfer rate
mean the same thing and will be used interchangeably.
Then the measured information is then passed to the
packet pre-marking decision-maker to decide whether
to pre-mark packets or not. If the observed transfer
rate is above the requested target rate, the PPE takes
the role of a passive monitor. If the measured transfer
rate is below its requested target rate, the PPE takes a
more active role and starts pre-marking packets. The
fraction of pre-marked packets varies from 0 to 1
depending upon algorithm chosen in packet
pre-marking decision-maker. Selective upgrading the
fraction of packets to the higher priority level will
help sustain the transfer rate close to the requested
target rate and keep the number of the pre-marked
packets as low as possible.

A. The transfer rate monitor

The main task of the transfer rate monitor is

used to measure the data’s copying rate from user
space to kernel space. The measured information
implies the end-to-end network traffic load which can
be fed into the packet pre-marking decision-maker
that has to decide whether to pre-mark packets or not.
From section 2, we know that the sender using TCP
to transmit data will keep its sending data in the
kernel space buffer until the acknowledgements from
the receiver is received. But the sending buffer is
limited. Therefore when the end-to-end network
traffic load is heavy and then the speed of the
acknowledgement from the receiver is slow, the
sender’s copying rate is also slow because the buffer
is filled with the unacknowledged data. In the other
hand, when the end-to-end network traffic is
light-loaded and then the speed of acknowledgement
from the receiver is fast, the sender’s copying rate is
also fast because the unacknowledged data is easy to
wipe out. From a network application’s point of view,

a p p l i c a t i o n

T C P

I P

o u t p u t q u e u e
d a t a l i n k

a p p l i c a t i o n b u f f e r (a n y s i z e)

s o c k e t s e n d b u f f e r (S O _ S N D B U F)

M S S - s i z e d T C P s e g m e n t s
M S S n o r m a l l y < = M T U -
4 0 (I P v 4)

M T U - s i z e d I P v 4 p a c k e t s

Figure 1 Steps and buffers involved when application writes to a TCP socket

a p p l i c a t i o n

U D P

I P

o u t p u t q u e u e
d a t a l i n k

a p p l i c a t i o n b u f f e r (a n y s i z e)

s o c k e t s e n d b u f f e r (S O _ S N D B U F)

M T U - s i z e d I P v 4 p a c k e t s

Figure 2 Steps and buffers involved when application writes to a UDP socket

the copying rate is easy to get. Every time the
function write() which is usually used to send data
based on TCP is called and the return value which
means the actual data bytes copying from user space
to kernel space is recorded. Then we can get average
transfer rate by dividing the altogether bytes with
total transfer time.

B. The packet pre-marking

decision-maker

The main purpose of the packet pre-marking
decision-maker is to adaptively adjust the packet
pre-marking rate based on the measured transfer rate.
We will introduce two different algorithms to
implement the decision-maker. One is the
probabilistic marking scheme proposed in [4] and the
other one is 2-bit-states method. In probabilistic
marking scheme, packets are randomly pre-marked
and the marking probability (prob) is periodically
updated depending on measured transfer rate and
requested target rate. Figure 3 shows the algorithm
when we use the probabilistic marking scheme.
Giving an instance to explain the algorithm. Suppose

that initially the prob is set to 70% to pre-mark
packets when the transfer rate is less than the target
rate, and the target rate is 100 Kbytes/sec. If the
measured transfer rate is 90Kbytes/sec, the prob will
become 73%. If the measured transfer rate is
110Kbytes/sec, the prob will become 27%. One
advantage of this algorithm is to decrease the prob
quickly when the transfer rate is higher than the
target rate. This helps the number of pre-marked
packets as low as possible. Once the prob is given, a
random number generator is used to generate a
number to compare with the prob and then to
determine whether to pre-mark packets or not. If it
needs to change the sending service, the function
setsockopt() is called to change the ToS bits in the IP
header.

But [4] also shows that probabilistic marking will
result in potential network instability in the network
due to large swings in the number of marked and
unmarked packets. So we propose a 2-bit-states
method to mitigate the problem mentioned above.
Figure 4 shows our method. The basic idea behind
this method is that we use some transient states to
minimize the changes from unmarked packets to

Every update interval
If (transfer_rate < target_rate){

scale = (target_rate- transfer_rate) / target_rate;
prob = porb + scale * (100 - prob);

}
else {

scale = (transfer_rate - target_rate) / transfer_rate;
prob = (100 - prob) * (1 - scale) ;

}

Figure 3 probability marking scheme

01

10

11

Measured rate < target rate

Measured rate > target rate

Pre-mark packets

00

01

10

11

heavy-loaded network status light-loaded network status

upgrade counter downgrade counter

00

Measured rate > target rate

Measured rate > target rate

Measured rate < target rate

Measured rate < target rate

Pre-mark packets

Pre-mark packets

Pre-mark packets

Unmark packetsUnmark packets

Unmark packets

Unmark packets

Figure 4 2-bit-states method

pre-marked packets or vice versa so frequently. We
use two counters in our algorithm, and each counter
has 4 different states, i.e. 00, 01, 10, and 11. Upgrade
counter is used when network traffic becomes heavy
and measured rate is below the target rate.
Downgrade counter is used when network status
becomes better and measured rate is above target rate.
00 represents the default state and best effort service
is used. 11 state means that the current best-effort
service is not sufficient to meet the user’s
requirement, so we have to pre-mark packets to
indicate the ISP that higher priority service is needed.
01 and 10 are the transient states. Initially, the state is
00. When the measured rate is less than the target rate,
state will change from 00 to 01. But we don’t
pre-mark packets immediately. The network may be
congested just for a short period. We just start to
pre-mark packets when the measured rate is below
the target rate successively observed 3 times.
Likewise, when the network status becomes better,
we don’t use best-effort service packets until the state
changing from 11 to 00.

IV. Experimental Results

To verify our PPE and compare the performance of
different methods chosen in packet pre-marking

decision-maker, we use Cisco routers to construct a
DiffServ testbed. Figure 5 shows the experimental
environment. We will run FTP client programs with
PPE built in on PC sender 1 and PC sender 2. PC
Receiver is the destination of traffic sent from these
two senders and has a FTP server program on it. We
also use a library libpcap on Linux platform to
implement the Packet Monitor 1 and Packet Monitor
2 to record the information of data transmission. The
network itself consists of 4 Cisco routers. The egress
routers, Router 1 and Router 2, and the ingress router,
Router3, are Cisco 1700 routers. The core router,
Router 4, is a Cisco 2621 router which has Weighted
Fair Queueing enabled. The bottleneck link of
capacity is 250 Kbytes/sec and lies between Router 4
and Router 3. Other links of capacity is 10 Mbps.

In the first experiment, we set the target transfer
rate of flow 1 on PC sender 1 to 150Kbytes/sec and
of flow 2 to 50Kbytes/sec on PC sender 2. The
transmitted file length is 10598400 bytes for both
senders. First we use probability marking based
packet pre-marker on PC sender 1 and PC sender 2 to
transmit files and then record the observation of flow
1 on PC monitor 1 and of flow 2 on PC monitor 2.
Following, we use 2-bit-states marking based packet
pre-marker. Figure 6 and Figure 7 show the
observations. From these two figures, we can clearly

Router 1

Router 2

Router 4 Router 3

PC sender 1

Pc sender 2

PC Receiver

Hub

Hub

Packet Monitor 1

Packet Monitor 2
Figure 5 Experimental Environment

0

50

100

150

200

250

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84

time(s)

tr
an

sm
is

si
on

 r
at

e(
K

B
/s

ec
)

2-bit-states

prob

Figure 6 the transmission rate of flow 1 observed by packet monitor 1

see that both probability and 2-bit-states
methods can achieve the target rate, 150
Kbytes/sec and 50 Kbytes/sec respectively. It
also can be shown that the transfer rate of
2-bit-states method is more stable than that of
probability method. But it is interesting to note
that flow 2 achieves about 100Kbytes/sec
transmission rate when flow 1 is on. Unlike
other research [7] which aims to make all flows
get a share of excess bandwidth proportional to
their target rates in an under-subscribed network.
Our goal is to keep the number of pre-marked
packets as low as possible when the target rate
of every flow can be achieved. So flow 1 just
needs to get some bandwidth from flow 2
through pre-marking some packets to achieve
150Kbytes/sec. Then flow 2 gets the remaining
bandwidth and achieves the transmission rate of
100Kbytes/sec when flow 1 is on. Take a closer
look in this experiment, we shows the number of
unmarked and pre-marked packets in Figure 8
and Figure 9. We can find that the number of

pre-marked packets of 2-bit-states method is less
than that of probability method. This is because
the transient states smooth out the variation and
then reduce the number of pre-marked packets.

Following experiment, we set the target transfer
rate of flow 1 on PC sender 1 to 200Kbytes/sec and
of flow 2 to 150Kbytes/sec on PC sender 2. This will
cause the aggregate target rate above the capacity of
bottleneck link between Router 4 and Router 3.
Figure 10 and Figure 11 show that both methods can
not meet the requested rate. So we propose to use two
thresholds in packet pre-marking decision-maker to
alleviate this problem. One is the target transfer rate
threshold which is the user’s requirement. The other
one is the minimum acceptable sending rate threshold
which means that user is willing to start paying more
money to compete for better-than-best-effort service.
Therefore we do the experiment again but with
minimum acceptable sending rate set. The target
transfer rate and minimum acceptable sending rate of
flow 1 is set to 200Kbytes/sec and 150Kbytes/sec
respectively. And the target transfer rate and
minimum acceptable sending rate of flow 2 is set to
150Kbytes/sec and 100Kbytes/sec respectively.

0

50

100

150

200

250

300

0 3 6 9 12 15 18 2124 27 30 33 3639 42 45 4851 54 57 60 6366 69 72 75 7881 84 87 90 9396 99 10

2

time(s)

tr
an

sm
is

si
on

 r
at

e(
K

B
/s

ec
)

2-bit-states

prob

Figure 7 the transmission rate of flow 2 observed by packet monitor 2

0

1000

2000

3000

4000

5000

2-bit-states prob

Types

P
ac

ke
ts unmarked

pre-marked

Figure 8 the number of unmarked and pre-marked packets in flow 1

0

1000

2000

3000

4000

5000

6000

7000

8000

2-bit-states prob

Types

P
ac

ke
ts unmarked

pre-marked

Figure 9 the number of unmarked and pre-marked packets in flow 2

Figure 12 and Figure 13 show the results. When
flow1 still fails to achieve the minimum acceptable
sending rate, flow 1 gives up the competition for
bandwidth. Then the flow 2 will get the bandwidth
and achieve the target rate, 150Kbytes/sec.

V. Conclusion and Future Work

In this paper, we have presented two important
components of the packet pre-marking engine (PPE):
the transfer rate monitor and the packet pre-marking

0

50

100

150

200

250

0 3 6 9 12151821242730333639424548515457606366697275788184879093969910

2

time(s)

tr
an

sm
is

si
on

 r
at

e(
K

B
/s

ec
)

2-bit-states

prob

Figure 10 the transmission rate of flow 1

0

50

100

150

200

250

300

0 3 6 9 12151821242730333639424548515457606366697275788184879093969910

2

10

5

time(s)

tr
an

sm
is

si
on

 r
at

e(
K

B
/s

ec
)

2-bit-states

prob

Figure 11 the transmission rate of flow 2

0

50

100

150

200

250

300

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 10

2

time(s)

tr
an

sm
is

si
on

 r
at

e(
K

B
/s

ec
)

Figure 12 the transmission rate of flow 1 with minimum acceptable sending rate set

0

50

100

150

200

250

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84

time(s)

tr
an

sm
is

si
on

 r
at

e(
K

B
/s

ec
)

Figure 13 the transmission rate of flow 2 with minimum acceptable sending rate set

decision-maker. The FTP client program with PPE
built in is used to study different requested transfer
rate. The experimental results show the effectiveness
of our PPE and the 2-bit-states method is a better
choice to implement the pre-marking decision-maker.

In the future, we will extend the two-priority
ToS scheme to multiple priorities. We will also
validate the PPE on more complicated network
topology.

References
[1] “IETF home page,” http://www.ietf.org/.

[2] R. Braden, L.Zhang, S. Berson, S. Herzong, and

S. Jamin, “ Resource ReSerVation protocol

(RSVP)－Version 1 functional specification,”

RFC 2205, Sept. 1997.

[3] Y. Bernet, J. Binder, S. Blake, M. Carlson, B. E.

Carpenter, S. Keshav, E. Davies, B. Ohlman,

and D. Berma, “A framework for differentiated

services,” Internet Draft, Feb. 1999

[4] Wu-Chang Feng, Dilip D. Kandlur, Debanjan

Saha, and Kang G. Shin, “Adaptive Packet

Marking for Maintaining End-to-End

Throughput in a Differentiated-Services

Internet,” IEEE/ACM Transactions on

Networking Vol. 7, No. 5, October 1999.

[5] David D. Clark, and Wenjia Fang, “Explicit

allocation of best-effort packet delivery service,”

IEEE/ACM Transactions on Networking, Vol. 6,

No. 4, August 1998

[6] Xiaoning He, Hao Che, ” Achieving end-to-end

throughput guarantee for TCP flows in a

differentiated services network,” Computer

Communications and Networks, 2000.

[7] Mohamed A. El-Gendy, Kang G. Shin,

“Equation-Based Packet Marking for Assured

Forwarding Services,” IEEE INFOCOM, 2002

[8] K.R. Renjish Kumar, A.L. Ananda, Lillykutty

Jacob, “TCP-friendly traffic conditioning in

DiffServ networks: a memory-based approach,”

Computer Networks, 2002

[9] W. Richard Steven, “Unix Network

Programming,” Volume 1, Networking

APIs:Sockets and XTI, second edition, Prentice

Hall Inc., 1998

