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Abstract 
 
This paper proposes a control mechanism named 

PPE (Packet Pre-marking Engine) in application layer 
to assist TCP-based connection flow in maintaining 
end-to-end throughput in DiffServ networks. The 
application with PPE built in can adaptively adjust 
the DSCP (DiffServ CodePoint) of user’s traffic 
according to the network traffic load to inform the 
service provider what kind of service is needed. 
When the network is light-loaded, the user’s 
requirement can be met and the best service is 
provided. As the traffic load becomes heavy, the 
requirement will fail to meet, and the better level of 
service is used instead. In this paper, we will 
implement an FTP client program with PPE in a 
testing DiffServ platform to illustrate the 
effectiveness of this control mechanism. 
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I. Introduction 
 

The Internet has historically offered a 
best-effort delivery service, where all user packets are 
equally treated in the network. Under this kind of 
service model, it is insufficient to meet the 
requirement of emerging real-time multimedia 
applications, and difficult to provide a 
better-than-best-effort service when customers are 
willing to pay more. Therefore, two different service 
models have been defined for network QoS by IETF 
[1] (Internet Engineering Task Force): Integrated 
Services (IS) [2] and Differentiated Services (DS) [3]. 
IS is an architecture that provides service 

discrimination by explicit allocation and scheduling 
of resources in the network. However, the complexity 
and scalability problems of IS has led DS to draw 
much attention to address quality of service. DS is 
based on a simple model where traffic entering a 
network is classified and possibly conditioned at the 
boundaries of the network, and assigned to different 
behavior aggregates that are a collection of packets 
with common characteristics. Each behavior 
aggregate is identified by a single DSCP 
(Differentiated Service CodePoint). Within the core 
of the network, packets are forwarded according to 
the Per-Hop Behavior (PHB) associated with the 
DSCP. Per-flow state does not need to be maintained 
in the core routers, which leads to increased 
scalability. 

Transmission Control Protocol (TCP) is the 
most widely used transport layer protocol in the 
Internet. Most popular applications, such as Web and 
file transfer use the reliable services provided by TCP. 
Although the well-developed congestion and flow 
control mechanism of TCP helps these applications 
work well in the traditional best-effort service based 
Internet, customers’ need and service providers’ 
expect would not be satisfied. Service providers 
would expect to maximize their return on investment 
in network infrastructure through offering different 
better-than-best-effort services and charging more 
money. In the other hand, customers would want to 
pay more to meet their requirement. Therefore, 
several traffic management and packet marking 
mechanisms [4-8] have been proposed for improving 
TCP performance with minimum rate guarantee in a 
differentiated service network. However, these 
researches put more efforts on network than on 
applications. We argue that applications themselves 
are also important and need to be evolved. The 



consideration of customer’s preference is an 
indispensable necessity for supporting QoS within 
the end-system, as only the customer is able to decide 
which application is important for him/her and should 
be preferred. This paper assumes network provides 
two different levels of service according to the Type 
of Service (TOS) bits of user’s traffic, and the 
usage-based pricing strategy is used to discourage 
users from continually requesting the higher level of 
service.  We propose a control mechanism, which 
we call a packet pre-marking engine (PPE), in 
application layer to help the individual connection 
flow maintain end-to-end throughput while keeping 
the service expenditure as low as possible. PPE 
measures the return speed of acknowledgement 
packet of TCP that approximately represents network 
status and then adaptively adjusts ToS bits when 
sending out customer’s traffic. If the network is 
light-loaded and measured transfer rate is above the 
requested rate, the best-effort packets are generated. 
When traffic load becomes heavy and the measured 
rate falls below the minimum target rate, the ToS bits 
are set to inform service provider the higher service is 
needed.  

The rest of the paper is organized as follows: 
Section II gives an overview of the data path from 
application level to kernel space. Section III presents 
the function of packet pre-marking engine and 
Section IV validates the PPE by using FTP with an 
adaptive packet pre-marking mechanism. We 
conclude in section V. 
 

II. Background 
 
The Internet has two main protocols in the 

transport layer, TCP and UDP. TCP provides a 
reliable service and UDP provides an unreliable 
service. Because there is a distinct discrepancy in the 
socket send buffer. We can see clearly from Figure 1 
and Figure 2. Every TCP socket has a send buffer, but 
UDP doesn’t. In TCP, when an application calls the 
function write(), the kernel copies all the data from 
the application buffer into the socket send buffer. If 
there is insufficient room in the socket buffer for all 
of the application’s data (either the application buffer 
is larger than the socket send buffer, or there is 
already data in the socket send buffer), the process is 
put to sleep. The kernel will return from the function 
write() until the final byte in the application buffer 
has been copied into the socket send buffer. Then 
TCP takes the data in the socket send buffer and 
sends it to the peer TCP, based on all the rules of TCP 
data transmission. The peer TCP must acknowledge 

the data from the socket send buffer. TCP must keep 
a copy of the data until the peer acknowledges it. On 
the contrary, UDP does not have a send buffer. When 
the application data is copied into a kernel buffer as it 
passes down the protocol stack, this copy is discarded 
by the data-link layer after the data is transmitted [9]. 

 
III. Packet Pre-marking Engine (PPE) 

A packet pre-marking engine (PPE) is mainly 
made up of two parts. One is the transfer rate monitor 
and the other part is the packet pre-marking 
decision-maker. The transfer rate monitor snoops on 
the application’s data copying from user space to 
kernel space and measures its observed transfer rate. 
In the following, the copying rate and transfer rate 
mean the same thing and will be used interchangeably. 
Then the measured information is then passed to the 
packet pre-marking decision-maker to decide whether 
to pre-mark packets or not. If the observed transfer 
rate is above the requested target rate, the PPE takes 
the role of a passive monitor. If the measured transfer 
rate is below its requested target rate, the PPE takes a 
more active role and starts pre-marking packets. The 
fraction of pre-marked packets varies from 0 to 1 
depending upon algorithm chosen in packet 
pre-marking decision-maker. Selective upgrading the 
fraction of packets to the higher priority level will 
help sustain the transfer rate close to the requested 
target rate and keep the number of the pre-marked 
packets as low as possible. 
 
A. The transfer rate monitor 

 
The main task of the transfer rate monitor is 

used to measure the data’s copying rate from user 
space to kernel space. The measured information 
implies the end-to-end network traffic load which can 
be fed into the packet pre-marking decision-maker 
that has to decide whether to pre-mark packets or not. 
From section 2, we know that the sender using TCP 
to transmit data will keep its sending data in the 
kernel space buffer until the acknowledgements from 
the receiver is received. But the sending buffer is 
limited. Therefore when the end-to-end network 
traffic load is heavy and then the speed of the 
acknowledgement from the receiver is slow, the 
sender’s copying rate is also slow because the buffer 
is filled with the unacknowledged data. In the other 
hand, when the end-to-end network traffic is 
light-loaded and then the speed of acknowledgement 
from the receiver is fast, the sender’s copying rate is 
also fast because the unacknowledged data is easy to 
wipe out. From a network application’s point of view,  
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Figure 1 Steps and buffers involved when application writes to a TCP socket 
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Figure 2 Steps and buffers involved when application writes to a UDP socket 

 
the copying rate is easy to get. Every time the 
function write() which is usually used to send data 
based on TCP is called and the return value which 
means the actual data bytes copying from user space 
to kernel space is recorded. Then we can get average 
transfer rate by dividing the altogether bytes with 
total transfer time. 
 
B. The packet pre-marking 

decision-maker 
 

The main purpose of the packet pre-marking 
decision-maker is to adaptively adjust the packet 
pre-marking rate based on the measured transfer rate. 
We will introduce two different algorithms to 
implement the decision-maker. One is the 
probabilistic marking scheme proposed in [4] and the 
other one is 2-bit-states method. In probabilistic 
marking scheme, packets are randomly pre-marked 
and the marking probability (prob) is periodically 
updated depending on measured transfer rate and 
requested target rate. Figure 3 shows the algorithm 
when we use the probabilistic marking scheme. 
Giving an instance to explain the algorithm. Suppose 

that initially the prob is set to 70% to pre-mark 
packets when the transfer rate is less than the target 
rate, and the target rate is 100 Kbytes/sec. If the 
measured transfer rate is 90Kbytes/sec, the prob will 
become 73%. If the measured transfer rate is 
110Kbytes/sec, the prob will become 27%. One 
advantage of this algorithm is to decrease the prob 
quickly when the transfer rate is higher than the 
target rate. This helps the number of pre-marked 
packets as low as possible. Once the prob is given, a 
random number generator is used to generate a 
number to compare with the prob and then to 
determine whether to pre-mark packets or not. If it 
needs to change the sending service, the function 
setsockopt() is called to change the ToS bits in the IP 
header. 

But [4] also shows that probabilistic marking will 
result in potential network instability in the network 
due to large swings in the number of marked and 
unmarked packets. So we propose a 2-bit-states 
method to mitigate the problem mentioned above. 
Figure 4 shows our method. The basic idea behind 
this method is that we use some transient states to 
minimize the changes from unmarked packets to  



Every update interval
If ( transfer_rate  < target_rate ){

scale = ( target_rate- transfer_rate ) / target_rate;
prob = porb + scale * ( 100 - prob );

}
else {

scale = ( transfer_rate - target_rate ) / transfer_rate;
prob = ( 100 - prob ) * ( 1 - scale) ;

}
 

Figure 3 probability marking scheme 
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Figure 4 2-bit-states method 

 
pre-marked packets or vice versa so frequently. We 
use two counters in our algorithm, and each counter 
has 4 different states, i.e. 00, 01, 10, and 11. Upgrade 
counter is used when network traffic becomes heavy 
and measured rate is below the target rate. 
Downgrade counter is used when network status 
becomes better and measured rate is above target rate. 
00 represents the default state and best effort service 
is used. 11 state means that the current best-effort 
service is not sufficient to meet the user’s 
requirement, so we have to pre-mark packets to 
indicate the ISP that higher priority service is needed. 
01 and 10 are the transient states. Initially, the state is 
00. When the measured rate is less than the target rate, 
state will change from 00 to 01. But we don’t 
pre-mark packets immediately. The network may be 
congested just for a short period. We just start to 
pre-mark packets when the measured rate is below 
the target rate successively observed 3 times. 
Likewise, when the network status becomes better, 
we don’t use best-effort service packets until the state 
changing from 11 to 00. 
 
IV. Experimental Results 
 

To verify our PPE and compare the performance of 
different methods chosen in packet pre-marking 

decision-maker, we use Cisco routers to construct a 
DiffServ testbed. Figure 5 shows the experimental 
environment. We will run FTP client programs with 
PPE built in on PC sender 1 and PC sender 2. PC 
Receiver is the destination of traffic sent from these 
two senders and has a FTP server program on it. We 
also use a library libpcap on Linux platform to 
implement the Packet Monitor 1 and Packet Monitor 
2 to record the information of data transmission. The 
network itself consists of 4 Cisco routers. The egress 
routers, Router 1 and Router 2, and the ingress router, 
Router3, are Cisco 1700 routers. The core router, 
Router 4, is a Cisco 2621 router which has Weighted 
Fair Queueing enabled. The bottleneck link of 
capacity is 250 Kbytes/sec and lies between Router 4 
and Router 3. Other links of capacity is 10 Mbps.  

In the first experiment, we set the target transfer 
rate of flow 1 on PC sender 1 to 150Kbytes/sec and 
of flow 2 to 50Kbytes/sec on PC sender 2. The 
transmitted file length is 10598400 bytes for both 
senders. First we use probability marking based 
packet pre-marker on PC sender 1 and PC sender 2 to 
transmit files and then record the observation of flow 
1 on PC monitor 1 and of flow 2 on PC monitor 2. 
Following, we use 2-bit-states marking based packet 
pre-marker. Figure 6 and Figure 7 show the 
observations. From these two figures, we can clearly 
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Figure 6 the transmission rate of flow 1 observed by packet monitor 1 

 
see that both probability and 2-bit-states 
methods can achieve the target rate, 150 
Kbytes/sec and 50 Kbytes/sec respectively. It 
also can be shown that the transfer rate of 
2-bit-states method is more stable than that of 
probability method. But it is interesting to note 
that flow 2 achieves about 100Kbytes/sec 
transmission rate when flow 1 is on. Unlike 
other research [7] which aims to make all flows 
get a share of excess bandwidth proportional to 
their target rates in an under-subscribed network. 
Our goal is to keep the number of pre-marked 
packets as low as possible when the target rate 
of every flow can be achieved. So flow 1 just 
needs to get some bandwidth from flow 2 
through pre-marking some packets to achieve 
150Kbytes/sec. Then flow 2 gets the remaining 
bandwidth and achieves the transmission rate of 
100Kbytes/sec when flow 1 is on. Take a closer 
look in this experiment, we shows the number of 
unmarked and pre-marked packets in Figure 8 
and Figure 9. We can find that the number of 

pre-marked packets of 2-bit-states method is less 
than that of probability method. This is because 
the transient states smooth out the variation and 
then reduce the number of pre-marked packets. 

Following experiment, we set the target transfer 
rate of flow 1 on PC sender 1 to 200Kbytes/sec and 
of flow 2 to 150Kbytes/sec on PC sender 2. This will 
cause the aggregate target rate above the capacity of 
bottleneck link between Router 4 and Router 3. 
Figure 10 and Figure 11 show that both methods can 
not meet the requested rate. So we propose to use two 
thresholds in packet pre-marking decision-maker to 
alleviate this problem. One is the target transfer rate 
threshold which is the user’s requirement. The other 
one is the minimum acceptable sending rate threshold 
which means that user is willing to start paying more 
money to compete for better-than-best-effort service. 
Therefore we do the experiment again but with 
minimum acceptable sending rate set. The target 
transfer rate and minimum acceptable sending rate of 
flow 1 is set to 200Kbytes/sec and 150Kbytes/sec 
respectively. And the target transfer rate and 
minimum acceptable sending rate of flow 2 is set to 
150Kbytes/sec and 100Kbytes/sec respectively.  
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Figure 7 the transmission rate of flow 2 observed by packet monitor 2 
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Figure 8 the number of unmarked and pre-marked packets in flow 1 
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Figure 9 the number of unmarked and pre-marked packets in flow 2 

 
Figure 12 and Figure 13 show the results. When 
flow1 still fails to achieve the minimum acceptable 
sending rate, flow 1 gives up the competition for 
bandwidth. Then the flow 2 will get the bandwidth 
and achieve the target rate, 150Kbytes/sec. 

V. Conclusion and Future Work 
 

In this paper, we have presented two important 
components of the packet pre-marking engine (PPE): 
the transfer rate monitor and the packet pre-marking  
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Figure 10 the transmission rate of flow 1 
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Figure 11 the transmission rate of flow 2 
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Figure 12 the transmission rate of flow 1 with minimum acceptable sending rate set 
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Figure 13 the transmission rate of flow 2 with minimum acceptable sending rate set 

 
decision-maker. The FTP client program with PPE 
built in is used to study different requested transfer 
rate. The experimental results show the effectiveness 
of our PPE and the 2-bit-states method is a better 
choice to implement the pre-marking decision-maker. 

In the future, we will extend the two-priority 
ToS scheme to multiple priorities. We will also 
validate the PPE on more complicated network 
topology. 
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