
Implement a QoS Algorithm for Real-Time Applications in the
DiffServ-aware MPLS Network

Zuo-Po Huang, *Ji-Feng Chiu, Wen-Shyang Hwang and *Ce-Kuen Shieh

adrian@wshlab2.ee.kuas.edu.tw, gary@hpds.ee.ncku.edu.tw,
wshwang@mail.ee.kuas.edu.tw, shieh@eembox.ee.ncku.edu.tw

Department of Electrical Engineering,
National Kaohsiung University of Applied Sciences, Taiwan R.O.C.

*Department of Electrical Engineering,
National Cheng Kung University, Taiwan R.O.C.

Abstract

This paper presents an implementation
of QoS algorithm (PPA, Preempted
Probability Algorithm) for DiffServ-aware
MPLS network under Linux platform. The
algorithm, which comprises of optimal LSPs
(Label Switching Paths) selection and the
network resource allocation, is injected into
the ingress router to verify the feasibility.
The experimental results show that this
approach can optimize network resources
efficiently and distribute the traffic through
the MPLS network.

Keywords: MPLS, Traffic Engineering,
DiffServ-aware MPLS Network, and
Real-Time Applications

1. Introduction

The network resources have to be
managed efficiently due to the exponential
growth of the bandwidth demand of new
real-time Internet applications over the last
years. The Internet technologies have to
adapt new demands for increased bandwidth.
These real-time Internet applications such as
streaming, videoconference, interactive
distance learning which impose throughput
and delay constraints expected to get better
delivery service through the Internet. The
Internet architecture only offers the
best-effort delivery service model, however,
all customer packets are treated equally.
These real-time applications are sensitive to
the Quality of Service (QoS). The Internet
Engineering Task Force (IETF) had
proposed two fundamental techniques for
supporting network QoS. These techniques

are either Integrated Service (IntServ) [1] or
Differentiated Service (DiffServ) [2]. IntServ
is an architecture that associates and
allocates resources to individual flow. It will
lead to scalability problem when hundreds or
thousands of flows are delivered through the
backbone network. DiffServ is based on a
simple model where traffic entering a
network is classified at the boundaries of the
network and assigned to different Behavior
Aggregates (BAs) that are a collection of
packets with the same Differentiated Service
Code Point (DSCP) [3]. Per-flow state does
not need to be maintained in the core routers,
which leads to increase scalability.

The Multi-Protocol Label Switching
(MPLS) integrates the label swapping of
layer-2 technology with scalability. In MPLS
network, the traffic is delivered through
Label Switched Paths (LSPs). MPLS is also
used to create LSPs for specific purposes,
such as Traffic Engineering (TE). The
objective of TE is to optimize network
resources efficiency and improve network
performance. Therefore, DiffServ and MPLS
are viewed as complementary in the pursuit
of end-to-end QoS provisioning at present.
In the architecture, DiffServ provides the
scalable end-to-end QoS, while MPLS
performs TE to evenly distribute traffic load
on available links and fast rerouting to route
through nodes. Currently, the combination of
DiffServ and MPLS is a promising technique
to provide QoS, while efficiently exploiting
network resources [10-11].
 In traditional IP network, the shortest
path is used to forward packets. This may
cause congestion on a specific link.

~ 1624 ~

Eventually, the link utilization is very low in
the backbone network. Hence, traffic
engineering is an important process to
distribute traffic efficiently throughout all of
the links from ingress router to egress router.
In this paper, we consider how to promote
the link utilization and resource management
to achieve QoS requirements efficiently.
First of all, we try to avoid all of the traffic
congesting with the shortest path. It means
that the next incoming traffic will be routed
to another LSP unless the network is in the
overload situation. Therefore, the link
utilization will be promoted. Secondly, the
higher-priority LSP will preempt the
resources of lower-priority LSP when the
bandwidth resources are restrained and then
the lower-priority LSP has to release
bandwidth, it has to be rerouted by selecting
another LSP, but this LSP cannot ensure that
the bandwidth resource will not be
preempted again. If the situation occurs often,
routers would have superfluous overhead
and encounters an awful quality of service.

The PPA had proposed with simulation
in the [14]. This proposed PPA can avoid
preemption for every priority flow and load
balancing in the MPLS networks. In order to
implement the PPA under Linux platform,
the PPA has to be injected into the ingress
router of DiffServ-Aware MPLS network to
distribute traffic efficiently.

The rest of this paper is organized as
follows: Section 2 gives the operation of
PPA briefly. Section 3 describes the
RSVP-TE daemon for DiffServ over MPLS
under Linux. Section 4 presents the
experimental results. Finally, the conclusion
is presented.

2. The Operation of PPA (Preempted
Probability Algorithm)

The PPA was implemented in the MPLS
network to support DiffServ-aware traffic
engineering and all the LSPs are established
by using RSVP-TE signaling from ingress
router to egress router.

In the operation of PPA, the ingress
router will calculate the preempted
probability of each link of each feasible LSP
according to the proposed PPA formula in
[14] when a LSP setup request is arrival.
After each link of preempted probability is
calculated, the PPA selects the maximum
preempted probability from each link of the
feasible LSPs. And then the PPA selects the
LSP to forward packets with the minimum
preempted probability in all feasible LSPs.
The flowchart of PPA is shown in Figure 1.
More details about PPA are described in
[14].

Feasible LSP is
existing?

LSP setup request arrival

Preemption is possible?

Reject LSP setup

calculatePreempted
Probabilityat each link of

each feasible LSP

select maximum
preempted probabilityfor
the LSP in each link of the

LSP

select minimum
preempted probability of

LSP to route in each
feasible LSP

Preemption

Setup LSP route or reroute

YES YES

NO

NO

Figure 1. The flowchart of PPA

3. RSVP-TE daemon for DiffServ over
 MPLS under Linux

The RSVP-TE (RSVP Traffic Engineering)
protocol is an extension to the Resource
reSerVation Protocol (RSVP). Initially,
RSVP is a signaling protocol for IntServ
reservation. The RSVP-TE extends two
practical functions for TE purpose in MPLS
network. One is the possibility to set up
LSPs and ER-LSPs, the other is the function
for traffic engineering.

~ 1625 ~

The overall structure works in the user
space and kernel space. It is shown in Figure
2 [12]. The netfilter is the most important
parts of the kernel space used to classify the
packets, QoS and fair queuing. The chief
component in the user space is the RSVP
daemon. The daemon is bulit to response the
RSVP signaling and to maintain the MPLS
state. It is also responsible for the allocating
and installation of the MPLS labels during
LSP set up procedure. The component of
rtest is a RAPI (RSVP Programming
Interface) application that takes LSP requests
and issues them to the daemon. The
component of rapirecv is also a RAPI
application that receives label requests at the
egress router and sends a response back to
the ingress router.

Figure 2. DiffServ over MPLS using RSVP-TE
under Linux overall architecture [12]

4. Experiment Results

In order to verify the feasibility of PPA
for the real-time applications, we constructed
a DiffServ-aware MPLS domain as shown in
Figure 3. The experiment platform contains
three hosts (Host Adrian, Gary and Neo) and
three diffserv-aware MPLS routers (LSR1 to
LSR3). We injected the PPA into LSR1.
Each of the links between two nodes is
10Mbps point-to-point Ethernet link unless
the link from LSR3 to Host Neo is 100Mbps
point-to-point Fast-Ethernet link. The host
Gary generates the background traffic
(marked as BE) as shown in Figure 4. The
host Adrian generates the real-time traffic
(marked as EF) as shown in Figure 5. The

host Neo receives the traffic from host
Adrian and Gary.

Figure 3. Experiment platform

Figure 4. Incoming best effort traffic (Gary)

Figure 5. Incoming real-time traffic

In this implementation, we treat all the
packets as three different classes for
DiffServ-aware MPLS network EF, AF21
and BE according to E-LSP
(EXP-Inferred-PSC LSPs) [11]. Table 1
shows the PPA QoS requirement mappings
in the DiffServ network over MPLS.

DiffServ class

PHB DSCP
MPLS EXP

Field MPLS Service class

EF 101110 000 Gold
AF21 010010 001 Silver

BE 000000 010 Best effort
Table 1. PPA QoS Requirement Mappings

A. Best effort delivery

We used VLC (VidelLan Client) [17]
media player to play real-time traffic from
host Adrian to host Neo. At the same time,
the host Gary generates the overload traffic
to host Neo. All the traffics are treated
equally because of best effort only. Figure 6
shows that the best effort service model is
used to deliver the traffic. Obviously, the

~ 1626 ~

packet loss occurs when the network
resources of the link between LSR1 and
LSR3 are unable to provide enough
resources for real-time application. Thus, the
receive node cannot get better QoS
guarantee. The outgoing traffic is shown in
Figure 7. The background traffic was
decreased around 7Mbps after real-time
traffic entered the network (started at
eightieth second). Furthermore, the real-time
traffic did not reach 1.5Mbps.

(a) Traffic on Host Adrian (b) Traffic on Host Neo
Figure 6. Best effort traffic delivery with

real-time application

Figure 7. Outgoing traffic of best effort

B. DiffServ over MPLS with Preemption
 Since the higher-priority LSP will
preempt the resources of lower-priority LSP
when the bandwidth resources are restrained,
and the lower-priority LSP has to be rerouted
by selecting another LSP. Figure 8 shows
that the best-effort traffic was preempted (at
364 second) and rerouted to another LSP
(from LSR1, LSR2 and LSR3). In this
experiment, the real-time traffic could get
better QoS, but the preemption times will be
increased greatly when more and more
traffics that are marked as different classes
are delivered in the network. This problem
will cause that the LSRs have to spend more
time rerouting these preempted flows, and it
is hard to achieve load balance purpose.

Figure 8. Preemption and Rerouting in

DiffServ-aware MPLS Network

C. DiffServ over MPLS with PPA

We injected the PPA into LSR1. The
LSR1 will select an optimal LSP to deliver
traffic. With this scheme, the receive node
can smoothly receive real-time traffic which
is delivered from host Adrian smoothly
(Figure 9). The real-time application traffic
did not have any packet loss because the LSP
was selected from LSR1, LSR2 and LSR3
by the LSR1, and the background traffic was
not preempted by the higher-priority traffic.
Hence, it can increase the throughput and
link utilization. The outgoing traffic is
shown in Figure 10. According to the figure,
it does not only ensure the real-time traffic
(keep 1.5Mbps) but also achieve an objective
of preemption avoidance, and increase the
throughput (from 8Mbps increasing to
10Mbps).

Figure 9. DiffServ over MPLS with PPA

scheme

Figure 10. Outgoing traffic for diffserv over

MPLS with PPA scheme

Total traffic

Background traffic

Real-time traffic

Total traffic

Background traffic

Real-time traffic

~ 1627 ~

5. Conclusion
 In this paper, we have verified the
feasibility of the PPA in DiffServ-aware
MPLS network for supporting the end-to-end
QoS and the resource optimization by using
the real-time applications. The PPA scheme
could avoid preemption and load balancing
in the DiffServa-aware MPLS network. The
experiment results indicated that the PPA
algorithm is better than traditional algorithm.
Even though the higher-priority flow did not
deliver the traffic by selecting the shortest
path, it still achieved the expectable
performance and load balancing.

Reference
[1] Braden, R., Clark, D. and Shenker, S.,

“Integrated Services in the Internet
Architecture: an Overview”, Internet
RFC 1633, June 1994.

[2] S. Blake, D. Black, M. Carlson, E.
Davies, Z. Wang and W. Weiss, “An
Architecture for Differentiated
Services,” RFC 2475, December 1998.

[3] K. Nichols, S. Blake, F. Baker and D.
Black, “Definition of the Differentiated
Services Field (DS Field) in the IPv4
and IPv6 Headers,” RFC 2474,
December 1998.

[4] Heinanen, J., Baker, F., Weiss, W. and J.
Wroclawski, “Assured Forwarding
PHB Group”, RFC 2597, June 1999.

[5] Jacobson, V., Nichols, K. and K. Poduri,
“An Expedited Forwarding PHB”, RFC
2598, June 1999.

[6] F. L. Faucheur, T. D. Nadeau, A. Chiu,
W. Townsend, et al, “Requirements for
support of DiffServ-aware MPLS traffic
engineering”, IETF Internet drafts,
November 2000.

[7] F. L. Faucheur, T. D. Nadeau, A. Chiu,
W. Townsend, et al, “Extensions to
RSVP-TE and CR-LDP for support of
DiffServ-aware MPLS traffic
engineering”, IETF Internet drafts,
November 2000.

[8] E.Rosen, A.Viswanathan, and R. Callon,
“Multiprotocol Label Switching
Architecture”, RFC 3031, January 2001

[9] D. Awduche, J. Malcolm, J. Agogbua,

M.O'Dell and J.McManus, “Require-
ments for Traffic Engineering Over
MPLS”, RFC 2702, September 1999.

[10] Li t., Rekhter Y., “A Provider
Architecture for Differentiated Services
and Traffic Engineering (PASTE)”,
RFC 2430, October 1998.

[11] F. Le Faucheur, L. Wu, B Davie, S
Davari, P. Vaananen, R. Krishnan, P.
Cheval, J. Heinanen, “MPLS Support of
Differentiated Services”, RFC 3270,
May, 2002.

[12] P. Van Heuven, S. Van Den Berghe, J.
Coppens, P. Demeester, “RSVP-TE
daemon for DiffServ over MPLS under
Linux”, http://dsmpls.atlantis.rug.ac.be.

[13] Lawrence. J, “Designing multiprotocol
label switching networks”, Communi-
cations Magazine, IEEE, Volume: 39
Issue: 7, July 2001, Page(s): 134 –142.

[14] J.F.Chiu, Z.P.Huang, C.W.Lo,
W.S.Hwang and C.K.Shieh, 2003,
"Supporting End-to End Qos in
DiffServ/MPLS Networks," 10th
International Conference on Tele-
communication (ICT 2003), Pages(s):
261-266.

[15] Tae-won Lee, Young-chul Kim,
“Implementation of a MPLS router
supporting DiffServ for QoS and
high-speed switching”, High Speed
Networks and Multimedia Communi-
cations 5th IEEE International
Conference, 2002, Page(s): 51 –55.

[16] White Paper, “Using MPLS for
real-time services”, Nortel Networks.

[17] VLC for Linux,
http://www.videolan.org/vlc/

[18] Brain Adamson, “The MGEN Toolset”,
http://manimac.itd.nrl.navy.mil/MGEN

[19] Kenjiro Cho, “Software”,
http://www.csl.sony.co.jp/person/kic/sof
tware.html

~ 1628 ~

