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Abstract 
 

Bluetooth is a promising wireless technology to form personal area network and is being applied in versatile 

areas including both IP and non-IP protocol services. Current existing medium access control (MAC) scheduling 

scheme only provides best-effort service for all master-slave connections. It is very challenging to provide quality of 

service (QoS) support due to the feature of master driven Time Division Duplex (TDD). The Bluetooth standard 

doesn’t address how to meet QoS requirements. Several works [3-9] have been dedicated to address this issue. But 

all of these approaches require modification of exiting Bluetooth specification and devices, and address only IP 

protocol services. 

To solve this problem, an ideal mechanism must meet following requirements: (1) practical for existing 

Bluetooth specification and devices, (2) QoS support for both IP and non-IP protocol service, (3) different QoS 

support in accordance with protocol service, (4) scalable without any changes to slaves. 

In this paper, a traffic shaper is introduced in the Logical Link Control and Adaptation Protocol (L2CAP) on 

master to provide QoS supports for both IP and non-IP packets on existing devices without modification of 

Bluetooth specification. The approach regulates traffic of different protocol services to comply with constrained 

rate in Bluetooth piconet. The approach has been implemented and tested in Linux operating system. Experimental 

results demonstrate that our scheme provides QoS support and is practicable in Bluetooth piconet. 

 



1 Introduction 

Bluetooth is a system for providing short-range, low-power and low-cost connectivity operating in the 

industrial scientific medicine (ISM) band at 2.4GHz [1]. Bluetooth was originally developed as cable 

replacement solution for consumer electronic products such as cell-phones, serial port and dial-up 

network. But it has been adapted for printers, keyboards, audio headset and virtually any other digital 

consumer devices. To date Bluetooth has been a wireless personal area network (PAN) technology for ad-

hoc and infrastructure networking as shown in Figure 1(a). 

Figure 1. (a) The typical network scenario (b) The Bluetooth protocol stack 

Bluetooth supports both voice and data traffic which are treated differently. Voice is circuit-switched 

connection providing guaranteed service over synchronous connection-oriented (SCO) link on fixed slots. 

Data are packet-switched connection providing best-effort service over asynchronous connection-less 

(ACL) link. With ACL link, Bluetooth can support various IP and non-IP protocol services, for example, 

object exchange, file transfer, synchronization, telnet/ftp, audio/video streaming, print/scan, 

mouse/keyboard, and audio headset, etc. Because these protocol services have various QoS requirements, 

it is very important to provide different QoS support for them. 

However, current Bluetooth specification doesn’t address how to meet these different QoS 

requirements, and current implementations only provide best-effort service to all applications. The 

Bluetooth Audio Video Distribution Transport Protocol (AVDTP) specification [2] also state that “When 

other profiles with stringent requirements are used in conjunction with a profile relying on AVDTP 
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protocol, the performance may be degraded due to insufficient support of QoS in the current Bluetooth 

specification (v1.1), which all profiles use”.  

Some literatures of [3-11] propose two kind approaches to alleviate this problem: In [3-9], several 

polling algorithms are proposed to decrease delay of packets. But, these polling algorithms consider only 

IP protocol service, and require modification of existing devices and extra interface of Bluetooth 

baseband specification to interact with different protocol service of application. In [10, 11], several 

segmentation and reassembly (SAR) policies are proposed to enhance throughput and total bandwidth 

utilization. Although these polices utilize bandwidth efficiently, they requires ultra information of each 

queue on baseband, which is not available in current Bluetooth specification. Moreover, neither these 

policies enhance throughput in accordance with of application nor address the QoS issue. From above 

related works, we found that their solutions would be impracticable since they require modification of 

existing Bluetooth specification and devices, and only consider IP protocol service. 

To address this problem, in this paper, we introduce a traffic shaper in L2CAP layer on master to 

provide QoS support without modification of Bluetooth specification, and in accordance with both IP and 

non-IP protocol services. L2CAP layer is located on host software but not on Bluetooth hardware, 

therefore it would be practical for existing Bluetooth devices to adapt our approach. One of two major 

functionality of the L2CAP is protocol multiplexing, therefore L2CAP will be the best place for traffic 

shaper to regulate both IP and non-IP protocol services. We classify different protocol services into 

different queues, and regulate traffic of each queue to comply with constrained rate. Compared with 

existing scheme, our approach is practicable for existing Bluetooth devices without modification of 

Bluetooth specification, shapes both IP and non-IP packets in Bluetooth piconet, and is scalable without 

any change to slaves. 

The rest of paper is organized as follows. Section 2 gives a background introduction to the Bluetooth 

technology. In Section 3 we propose our traffic shaper scheme. Section 4 explains the implementation. 

Section 5 shows experiments and results. Section 6 concludes this paper. 



 

2 Bluetooth technology 

As seen in Figure 1(b), the complete Bluetooth protocol stack comprises of both Bluetooth specific 

protocols like Bluetooth Network Encapsulation Protocol (BNEP), Hardcopy Cable Replacement 

Protocol (HCRP), Human Interface Device (HDI), AVDTP, L2CAP, Host Controller Interface (HCI), and 

non-Bluetooth specific existing protocols like RFCOMM, Object Exchange (OBEX), PPP, TCP, and 

UDP, etc. The re-use of existing protocols helps to adapt existing applications to work with Bluetooth 

technology. These protocols stacking over L2CAP is referred as upper layer. Here we describe some 

related background information. 

 

2.1 Upper layer 

The BNEP protocol is defined over L2CAP to encapsulate Ethernet protocol. This makes TCP and 

UDP network applications reside on top of BNEP as network access point and ad-hoc network. TCP is 

used for best-effort traffic like ftp/telnet, and UDP is mostly used for audio/video real-time applications. 

The RFCOMM protocol provides emulation of serial ports over L2CAP protocol. The OBEX related 

applications such as object exchange, object push, synchronization and file transfer are residing on top of 

RFCOMM protocol, and dial-up network IP applications are residing on top of PPP and RFCOMM 

protocol. The RFCOMM protocol is a subset of ETSI GSM TS 07.10 standard. The HCRP protocol 

resides on top of L2CAP for printer and scanner applications. The AVDTP protocol resides on top of 

L2CAP for audio video streaming. AVDTP defines audio/video stream negotiation, establishment, 

transmission procedures and message format. The transport mechanism and message formats are based on 

two major protocols: RTP (Real-time Transport Protocol) and RTCP (Real-time Transport Control 

Protocol). The HID protocol is defined to use human interface devices, such as mouse, keyboard, joystick, 

remote sensor, and bar code scanner over Bluetooth protocol stack using the L2CAP layer.  

 



2.2 HCI 

Bluetooth devices will have various physical bus interfaces, such as USB, PC card, RS232, and UART, 

could be used to connect to the Bluetooth hardware. The HCI interface provides a uniform interface 

method of accessing the Bluetooth baseband capabilities.  

HCI data packets are used to exchange data between host software and Bluetooth hardware. The 

connection handle field of HCI packet identifies the ACL connection for the data. The host must use 

different connection handle for ACL link on different remote device. Since only single ACL link can exist 

between a master and a slave, only a unique connection handle will be used for each remote device. 

Therefore connection handle can be used to identify which remote device connected to. 

 

2.3 L2CAP 

As shown in Figure 1(b), the Bluetooth protocol stack relies on L2CAP layer to provide services to 

upper-layer protocols. Two major functionalities of L2CAP are higher layer protocol multiplexing 

capability and packet SAR operation. The L2CAP protocol multiplexing uses protocol service 

multiplexor (PSM) of L2CAP connection request packet to identify upper layer protocol services (BNEP, 

RFCOMM, HCRP, AVDTP, etc). The SAR function segments a L2CAP packet into several HCI packets 

for transmission over baseband/radio air, and reassembles those at the receiver before forwarding them to 

the upper layer. 

The L2CAP is packet-based and follows a communication model based-on channel. A channel 

represents a data flow between L2CAP entities in remote devices. Each one of the end-points of an 

L2CAP channel is referred by a channel identifier (CID). CID is logical name representing logical 

channel end-point on device. Same CID is not reused as a local L2CAP channel endpoint for multiple 

simultaneous L2CAP channels between a local device and same remote device. 

CID assignment is relative to a particular device and a device can assign CIDs independently from 

other devices. Thus, even if the same CID value has been assigned to channel endpoints by several remote 



devices connected to a single local device, the local device can still uniquely associate each remote CID 

with a different device by different HCI connection handle. Therefore, the three-tuple information: 

connection handle, CID, and PSM can be used to identify L2CAP protocol service in remote devices. 

 

In summary, Bluetooth applications consist of various IP and non-IP protocol services in upper layer 

using L2CAP protocol. Since the upper layer and L2CAP locate on host software, which would be 

practical to adapt with existing Bluetooth system. By means of the three-tuple information, it would be 

ideal to classify and shape protocol services in L2CAP. 

 

3 Traffic Shaper Scheme 

In this section, we introduce a traffic shaper scheme in L2CAP layer to regulate traffic over ACL links 

to comply with constrained rate.  

Figure 2. (a) Traffic shaper scheme (b) Traffic shaper algorithm 

Figure 2(a) shows the structure of our scheme in L2CAP layer on a master node of Bluetooth piconet. 

The traffic shaper of our approach locates on master of Bluetooth piconet as existing IP traffic shaper on 

network gateway. This achieves practicability and scalability, since master is embedded our scheme in 

host software and slaves leave no change. The traffic shaper can regulate both incoming and outgoing 

packet on master. The traffic shaper consists of several major components: 
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Service_table: The service_table stores settings of protocol service (PSM) and corresponding 

constrained rate specified by Manager graphic user interface. 

CID_table: The CID_table is maintained by classifier to track three-tuple information: connection 

handle, CID, and corresponding protocol service (PSM) of L2CAP connection request packet, so as to 

identify protocol service after channel configured. 

Classifier: The classifier allocates single queue and server for each protocol service (PSM) of 

service_table. In connection establishment state, the classifier tracks L2CAP connection request packet to 

construct CID_Table. After channel configured, the classifier identifies each L2CAP data packet by the 

tree-tuple information of CID_Table, then dispatches it to corresponding protocol service queue. 

Queue: Each protocol service will be allocated a separate buffer for queuing.  

Server: Each queue comes with a separate server as leaky bucket traffic shaper to regulate L2CAP data 

packet to constrained rate defined in service_table. The shaping mechanism is multiple single-server 

queues. 

The algorithm of our scheme is shown in Figure 2(b). During connection establishment state, the 

connection initiator will send L2CAP connection request packet including PSM and source CID field to 

create L2CAP channel (on HCI connection handle) between two devices.  The source CID represents a 

channel endpoint on the device sending the request. Once the channel has been configured, L2CAP data 

packets on transmission must be sent to this CID, but without PSM field. Therefore, classifier constructs 

CID_table composed of three-tuple information of L2CAP connection request packet in connection 

establishment state, to identify L2CAP data packet’s protocol service after channel configured. 

After channel configured, the classifier will examine CID field of L2CAP data packet to identify its 

protocol service (PSM). If PSM listed in service_table, the classifier puts packet into a separate queue, 

otherwise immediately reinjects packet to original path. Once packet has been enqueued, the server 

shapes traffic to constrained rate of service_table to dequeue packet into original path. If queue is full, 

L2CAP packet will be dropped. 



Consequently, with the help of the CID_table and service_table, the classifier can identify IP and non-

IP protocol service, and the server can shapes traffic to constrained rate. 

 

4 Implementation 

Figure 3. (a) Bluetooth architecture in Linux (b) Embedded Traffic shaper (after channel configured) in 
BlueZ protocol stack 

 
This section describes the implementation of our scheme in Linux. Linux is an open source operating 

system with Bluetooth protocol stack. We implement our shaper in L2CAP layer (l2cap.c) of BlueZ 

protocol stack [12] within Linux kernel 2.4.19. Figure 3(a) illustrates the Bluetooth architecture in Linux. 

In connection establishment state, several routines are called to construct three-tuple information of 

CID_table. The connection initiator use l2cap_connect routine to send connection request L2CAP packet, 

then acceptor is invoked by l2cap_connect_req routine with HCI connection handle and L2CAP protocol 

service (PSM) to choose proper source CID. If acceptor listens on same protocol service, the acceptor will 

invoke l2cap_send_rsp routine from same l2cap_connect_req routine to response initiator. The initiator 

will be invoked by l2cap_connect_rsp, l2cap_connect_cfm and l2cap_conn_ready routines as connection 

confirmed. Therefore, we implement classifier of shaper in l2cap_connect_req, l2cap_conn_ready and 

l2cap_connect_rsp routines to track three-tuple information of CID_table. 
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After channel configured, when the HCI layer of receiver accepts incoming HCI packet from 

Bluetooth hardware, it forwards it to l2cap_recv_acldata routine in Figure 3(b) to assemble segmented 

HCI packets to form completed L2CAP packet. Then L2CAP layer passes L2CAP data packet to 

l2cap_recv_frame and l2cap_data_channel routine, then invoke sock_queue_rcv_skb routine based-on 

PSM to transfer L2CAP packet to sock_recvmsg routine of upper layer like RFCOMM and BNEP. If 

sender’s upper layer protocols call sock_sendmsg routine to transmit outgoing packets, the kernel will 

invoke l2cap_chan_send to segment L2CAP packet into several HCI packets in HCI layer, then HCI 

packet will be sent into Bluetooth hardware. Therefore, we implement classifier and server in 

l2cap_data_channel and l2cap_chan_send routines to classify, enqueue and dequeue protocol service’s 

queue for incoming and outgoing traffic. The highest rate at the server can shape, is limited by the system 

timer (trigged by hardware and counted by the timer interrupt in Linux kernel), which normally ticks at 

100Hz. 

To provide visual friendliness for users, the manager is implemented with GTK+ shown in Figure 4 to 

interact with shaper to manipulate (add, del, or change, etc) constrained rate for specific protocol service 

(PSM). 

Figure 4. Manager 

 



5 Experiments 

Figure 5. Experimental platform 

The experimental platform contains four Bluetooth version 1.1b devices, using one master M and three 

slaves S1, S2 and S3. The network is shown in Figure 5. Our traffic shaper scheme is running on host 

software of master M. 

In order to verify the effectiveness of our scheme, we measured the throughput and delay of piconet 

composed of slaves running different protocol services. We use hcidump [12], MGEN [13], and iperf [14] 

to measure the throughput and delay of OBEX (RFCOMM), UDP and TCP (BNEP), respectively. We 

experiment different protocol services with three scenarios in Table 1(a), (b) and (c). 

Table 1. Experiment parameters of (a) OBEX and TCP, (b) OBEX and UDP, (c) OBEX, TCP and UDP 
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Table 2. (a) Goodput of OBEX and TCP, (b) Goodput of OBEX and UDP, (c) Delay of UDP when 
OBEX is present  (d) Goodput of OBEX, TCP and UDP (e) Delay of UDP when OBEX and TCP present. 
“Without” means without our scheme and “With” means with our scheme 

The experimental results of first scenario are shown in Table 2(a). With our scheme, the goodput of 

OBEX is 69.0 kbps, which is approximately close to the pre-defined constrained rate, i.e. 70 kbps. The 

goodput of TCP protocol is 485.4 kbps, better than 378.3kbps, i.e. without our scheme. Meanwhile, total 

bandwidth utilization is 554.4 kbps, close to 543.2 kbps.  

The results of second scenario are shown in Table 2(b) and (c). With our scheme, the goodput of UDP 

protocol is 453.5kbps, better than 335.7kpbs. Total bandwidth utilization is 522.5 kbps, close to 511.9 

kbps. The average/max/variances of delay are 1.10/1.20/0.17, better than 1.53/1.64/0.18. 

The results of third scenario are shown in Table 2(d) and (e). With our scheme, the goodput of UDP 

protocol is 217.3 kbps, better than 207.2 kbps. The goodput of TCP protocol is 243.0 kbps, better than 

219.3 kbps. Total bandwidth utilization is 529.3 kbps, which is 5% less than 556.3 kbps. The 

average/max/variances of delay are 0.02/0.02/0.002, better than 0.94/1.73/0.53. 

 

6 Conclusions and future work 

This paper proposed a traffic shaper scheme in L2CAP layer on master to provide QoS support in 

Bluetooth piconet. It is implemented in Linux to regulate predefined protocol service to constrained rate. 
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The experimental results have demonstrated that our approach (1) is practical for existing Bluetooth 

specification and devices, (2) regulates both IP and non-IP protocol services, (3) provides different QoS 

support in accordance with protocol service, (4) is scalable without any changes to slaves.  

We plan to investigate the performance in scatternet, and present of AVDTP in the near future. We 

also intend to provide QoS support directly based-on TOS (Type of Service) field in the IP header for 

differential service. 
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